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1. Overview Supplementary Material
In the supplementary material we present the following;

• Comparison of using different internal constraints for
building minimal solvers (Section 2)
• Additional discussion about related works (Section 3)
• Derivation of the generalized epipolar constraints us-

ing Plücker lines (Section 4)
• More details on the radar-camera calibration experi-

ment (Section 5)
• Finally we consider two special cases; planar scene

(Section 6) and known vertical direction (Section 7)

In Table 2 we also present more details results for the exper-
iment on approximating large focal lengths as orthographic.

2. Impact of Internal Constraints
In this section we evaluate how the different internal con-

straints on the ortho-perspective essential matrix impact the
minimal solvers. We compare the following equation sets

• Orthogonality constraints from Zhang et al.[29],

eT1 e1 − eT2 e2 = 0, eT1 e2 = 0, det(E) = 0 (1)

• Trace-constraints proposed in the main paper,

2EETDE − tr(EETD)E = 0, det(E) = 0 (2)

• Combining trace-constraints with the orthogonality
constraints from Zhang et al. [29].
• Directly parameterizing the essential matrix using the

Cayley-parameterization for the rotation

E = [(t1, t2, 1)]×DR (3)

For each set of constraints we create a minimal solver using
the generator from Larsson et al. [13]. The solvers are im-
plemented in C++ and benchmarked on 1000 random syn-
thetic instances. Table 1 show the solver statistics and the
distribution of the residuals can be found in Figure 1.

Constraint Template sz. Solutions Runtime Residual

Ortho. 42 × 54 12 0.09 ms -11.45
Trace 10 × 20 10 0.07 ms -12.27
Trace + Ortho. 12 × 20 8 0.05 ms -12.09
Cayley 389 × 405 16 4.97 ms -8.85

Table 1. Statistics for minimal solvers created using different con-
straints. The table shows the average runtime and log10 equation
residual for 1000 synthetic instances. Only by using the proposed
trace constraints together with the orthogonality constraints from
Zhang et al. [29] do we get the minimal number of solutions. Ad-
ditionally the solver is slightly faster compared to the other ap-
proaches.

−16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

Logarithmic residual

Ortho.
Trace
Trace + Ortho.
Cayley

Figure 1. Solver stability. The figure shows the distribution of the
log10 equation residuals for 1000 random synthetic instances.

3. Additional Discussion on Related Works

In this section we discuss additional related works;
mainly related to the applications we show in the paper.
Aerial/Satellite. There have been several works which try
to align 3D models with aerial or satellite images. Kamin-
sky et al. [11] align structure-from-motion models to over-
head images. The method first extracts edges in the over-
head image. Then it optimizes the alignment by promoting
that the 3D points project onto edges in the ortho-image
while enforcing free-space constraints obtained from the
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rays between the 3D points and the cameras. In [16] Ni
et al. proposed a method for aligning 3D-point clouds to
an aerial image. They first estimate the up-direction in the
point cloud, and then estimate the remaining parameters us-
ing an approach based on the Hough-transform. Another
approach was proposed by [28] which instead aligns 3D
maps to a satellite image by minimizing a cost derived from
the Chamfer distance of the projections. Shan et al. [22]
consider the problem of performing local feature matching
between aerial and ground-level images. Their approach
is based on using dense depth to synthesize images where
viewpoints align with the aerial photo. For settings where
only rough position estimates are available from GPS, Park
et al. [18] propose to use matching between the query im-
age and an aerial view to estimate camera viewing direction.
See Gao et al. [8] for a recent survey on ground-to-aerial
registration.

2D-Maps. There have also been several works which utilize
2D-maps (such as floor plans) for various 3D vision tasks.
For example, Wijmans et al. [27] leverage 2D-maps for co-
registering several panoramic RGB-D images. In [3] the
authors propose to use floor plans for LiDAR-based local-
ization. There are also several works which perform image-
based localization against 2D-maps. For example, in [4]
the authors localize by finding vertical edges of buildings in
an omnidirectional image. These are then used to estimate
the camera pose w.r.t. a 2D map. Chu et al. [5] present a
method for refining a coarse initial position/orientation es-
timate given a 2D-map. Arth et al. [1, 2] propose a localiza-
tion framework which instead uses a 2.5D map representa-
tion (i.e. 2D-map augmented with height information).

Radar calibration. Extrinsic relative calibration of com-
bined camera and radar systems has been investigated in a
number of previous works. The exact geometry relating the
camera and radar frame is highly non-linear and therefore
simplifications both to the feature extraction and to the radar
model are often utilized. One can assume that the scene is
planar, which leads to homography based methods, [24, 26].
The calibration is here done by solving for the homography
in a least squares manner. Many methods use specialized
calibration targets [19, 6] in order to simplify the feature
matching. These methods are based on iteratively minimiz-
ing some cost function, and if the full radar model is used,
as in [15], then additional properties of the 3D scene are
assumed to be known apriori. Recently also learning ap-
proaches have been proposed, however often these require
known calibration ground truth data for training [20]. To
our knowledge the mixed orthographic-perspective model
has not been used previously for calibrating radar-camera
systems.

4. Derivation of Non-central Constraints using
Plücker Coordinates

In the main paper we derived the constraints for non-
central perspective projection (i.e. a generalized camera) in
combination with orthographic projection. In [23] the con-
straints and solver for the pure perspective case were devel-
oped using the Plücker representations of the 3D viewing
lines. For additional geometric understanding we will now
show how a similar analysis can be done also in our case.
For further details on Plücker represesentations and proper-
ties see e.g. [21]. A line in 3D can be parametrized using
two vectors, q and q′. Here q represents the direction of the
line, and q′ is given by the cross product of any two points
on the line (or by q and any point on the line). The rep-
resentation is only determined up to scale and also fulfills
a quadratic constraint, and hence has four degrees of free-
dom. Two 3D lines (q1, q′1) and (q2, q

′
2) will intersect if and

only if
qT1 q

′
2 + qT2 q

′
1 = 0. (4)

Now consider a correspondence between an orthographic
camera and a non-central camera. Again let xo denote the
image point in the ortho-image and parameterize the view-
ing ray in the non-central cameras as λxp + cp. The view-
ing ray in the perspective camera has Plucker coordinates
(xp, s(cp × xp)), where s is the unknown scale between
the two coordinate systems. In the orthographic camera we
have the viewing ray given by ((0, 0, 1)T ,xo × (0, 0, 1)T ).
In order to check if these two lines intersect we need to
have them in the same coordinate system. To this end
we transform the Plucker coordinates of the orthographic
camera to the perspective coordinate system, giving q2 =
RT (0, 0, 1)T and

q′2 = (RT (xo −

t1t2
0

))× (RT

00
1

) = (5)

RT (

mx − t1
my − t2

1

×
00
1

) = RT

 my − t2
−(mx − t1)

0

 . (6)

Now inserting the expression for the two lines in (4) gives
the following constraint

(RT

00
1

)T (s(cp × xp)) + (RT

 my − t2
−(mx − t1)

0

)Txp =

(7)

s

00
1

T

R(cp × xp) +

mx

my

1

T

TRxp = (8)

scTp [r3]×xp + xT
o Exp = 0. (9)
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150mm
(N=10237)

AUC5 4.00 26.29 7.13 21.60 57.68
AUC10 16.05 44.52 18.66 44.13 69.53
AUC20 37.90 65.68 39.53 66.81 80.23
F1 0.87 0.92 0.90 0.93 0.90

300mm
(N=9391)

AUC5 10.35 19.49 10.70 12.87 54.88
AUC10 27.13 34.71 25.36 31.21 67.05
AUC20 49.07 56.09 47.51 56.07 76.88
F1 0.91 0.93 0.93 0.94 0.92

600mm
(N=3313)

AUC5 20.39 11.22 15.16 6.98 43.22
AUC10 37.78 21.76 29.20 20.18 59.09
AUC20 56.13 42.57 48.66 44.92 70.93
F1 0.92 0.93 0.93 0.94 0.92

Table 2. Ortho-approximation for large focal lengths. The table
shows different AUC for the rotation error in degrees and the F1
score of the inliers w.r.t. the ground truth inliers. Orthographic ap-
proximation works better for large focal lengths whereas the per-
formance degrades for the solver which tries to estimate the focal
length (OPE vs. fo+E). The same trend occurs when the focal
length in the perspective camera is unknown (OPE+fp vs. F ).
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Figure 2. Schematic overview of the radar geometry, shown in the
xz−plane (left) and the xy−plane (right). The 2D radar measures
the distance r and the angle θ. The true unknown 3D position is
given by X. The homography approximation is given by X’ and
the orthographic approximation by X”

5. Orthographic Radar Model

In the main paper we showed results on camera-radar
calibration using the ortho-perspective essential matrix. We
will here provide some more details and motivation on the
geometric setup and the experiments. A schematic of the
geometry for the 2D radar we consider is given in Fig. 2.
The 2D radar measures the distance to a point in 3D, and
also the angle to the point in the plane that the radar is
swept in. This means that in the coordinate system of the
radar, the 3D point is constrained to lie on a circle. The
problem that we would like to address is to estimate the
relative pose between a 2D radar and an ordinary camera,
given a number of measured point correspondences, possi-
bly containing a large amount of outliers due to mismatches.
To solve this problem directly is very difficult, but we will
show that our ortho-perspective epipolar geometry gives a
very good approximation of the geometry for many practi-
cal cases. An approximation that simplifies the geometry

is to assume that all points lie in the plane that the radar is
swept in. The benefit of this approximation is that one can
directly compute it from the radar measurement, simply as
X′ = (r cos θ, r sin θ, 0) if the radar is swept in the plane
z = 0. This approximation is valid if the height (i.e. offset
from the radar plane) is small compared to the distance from
the radar. Since this approximation directly gives us the 3D
coordinate from the radar measurement, and all points lie in
a plane, we can describe the mapping from the radar data to
any perspective camera viewing the same points with a ho-
mography. If we now instead let the 3D point lie on the line
X′′ = (r cos θ, r sin θ, z) we get a much better approxima-
tion of the true position. The mapping from the 3D point to
the radar data can now be described using an orthographic
camera

P =

1 0 0 0
0 1 0 0
0 0 0 1

 , (10)

so that r cos θr sin θ
1

 = P


r cos θ
r sin θ
z
1

 . (11)

For our calibration setup, persons walking were tracked
automatically both in the radar and a calibrated camera, and
the goal is to automatically find the relative pose between
the camera and the radar. We model the radar using an or-
thographic camera and compare our results with using a ho-
mography based approximation of the scene. To test the
repeatability and stability of the results, we collected two
different datasets (i.e. two different point tracks), but where
the camera-radar configuration was the same. The repro-
jection results can be seen in Figure 3, for the two datasets
(top and bottom, respectively). Left and middle shows the
reprojections in the projective camera and the radar using
our orthographic model. Right shows the reprojection us-
ing a homography. The homography based method gives
worse results especially in the areas where the planar scene
model isn’t valid. In Figure 4 the reconstruction results for
the two sets (top and bottom, respectively) are given. One
can see that we get consistent relative pose estimated for the
two datasets.

6. Ortho-Perspective Planar Homography

In the case of a planar scene there exists a homography
between the images. Similar to the perspective case (see
e.g. [7, 30, 14]) this homography can be factorized into the
relative pose and the plane-normal.

Assume that the plane is given by nTX = 1 in the co-
ordinate system of the perspective camera. The perspective
depth can then be found as X = λxp =⇒ λ = 1/nTxp.



Projecting into the orthographic camera we get(
mx

my

)
=

1

nTxp

[
rT1
rT2

]
xp +

(
t1
t2

)
. (12)

Rewriting this reveals the structure of the homography

xo =

mx

my

1

 '
 rT1

rT2
0T

+

t1t2
1

nT

xp. (13)

Note however that it still has eight degrees of freedom.
Therefore there does not exist any additional internal con-
straints and the matrix can be linearly estimated using
DLT [9] from four point-correspondences.

Now given a homography H we can recover the factor-
ization in (13). We start by noting that the third row directly
gives the normal vector n = h3. We can further parameter-
ize the rotation in terms of the translation by

r1 = h1 − t1h3, r2 = h2 − t2h3, (14)

where h1,h2,h3 are the rows of H . Since the homography
is only estimated up to scale, this yields two polynomial
constraints in rT1 r2 = 0, rT1 r1 = rT2 r2, which are quadratic
in t1 and t2. Hiding the variable t1 we can rewrite this as
A(t1)

(
t22, t2, 1

)T
= 0 where the matrix A(t1) =[

−nT n 2hT
2 n hT

1 h1 − 2t1hT
1 n + t21nT n − hT

2 h2
0 t1nT n − hT

1 n hT
1 h2 − t1hT

2 n

t1nT n − hT
1 n hT

1 h2 − t1hT
2 n 0

]
.

The third row of A is simply t1rT1 r2. The determinant of A
now yields a degree four univariate polynomial in t1 which
can be solved in closed form. For each solution of t1 we
can recover t2 = (t1h

T
2 n− hT

1 h2)/(t1n
Tn− hT

1 n).

7. Known Vertical Direction

In this section we consider the special case of known
vertical direction. This can e.g. be from IMU devices or
estimated from vanishing points in the perspective image.
For aerial/satellite images the inclination angle is also often
provided. Let vp and vo be the vertical direction in the coor-
dinate systems of the perspective and orthographic camera,
respectively. Further, let R0 be any rotation which takes vp

onto vo, i.e. vo = R0vp. This then gives us the relative
rotation up to an unknown rotation around vo, i.e.

R = R(θ,vo)R0, (15)

whereR(θ,vo) is a rotation around vo with angle θ. For the
perspective camera we can pre-rotate the coordinate system
with R0, i.e. replacing xp with R0xp, which reduces the
relative rotation to R(θ,vo).

7.1. Minimal Solver

The special structure of the rotation reduces the over-
all degrees of freedom to three instead of five. Thus we
can minimally estimate the essential matrix from only three
correspondences. We will now derive a minimal solver for
this case. Note however that due to the similar structure,
the derivations closely follow the perspective essential ma-
trix solver with known vertical direction from Sweeney et
al. [25].

Using the Weierstrass substitution q = tan(θ/2), the ro-
tation matrix (up to scale) can be written as

R(q) = (1 + q2)I + 2q[vo]× + 2q2[vo]
2
×. (16)

This allows us to parameterize the essential matrix with
three parameters via

E(q, t1, t2) =

 0 −1 0
1 0 0
−t2 t1 0

R(q). (17)

The three epipolar constraints can then be rewritten as

(
C2q

2 + C1q + C0

)t1t2
1

 = 0, Ci ∈ R3×3. (18)

This is a quadratic eigenvalue problem which can be solved
using standard methods.

7.2. Overhead Orthographic Images

Interestingly the problem has a special structure when
the vertical direction is aligned with the viewing direction
of the orthographic camera, i.e. vo = (0, 0, 1)T . In this case
the relative rotation is around the z-axis, i.e.

R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 . (19)

The essential matrix then has the form

E =

− sin θ − cos θ 0
cos θ − sin θ 0
x y 0

 , (20)

where x = t1 sin θ − t2 cos θ and y = t1 cos θ + t2 sin θ.
From the epipolar constraints we can write the problem as

A(cos θ, sin θ, x, y)T = 0, A ∈ R3×4. (21)

Finding the nullvector of A and rescaling such that the first
two elements are a unit-vector yields the solution.

It turns out that the problem is geometrically equivalent
to 1D absolute camera pose estimation. To see this alge-
braically, note that we can rewrite the epipolar constraint
as

xT
o Exp = (−y, x)RT

2×2

[(
mx

my

)
−
(
t1
t2

)]
= 0, (22)



where xp = (x, y, z)T , xo = (mx,my, 1) and R2×2 is the
top 2× 2-block of R. We can also interpret these as the 1D
reprojection equations

λ

(
x
y

)
= RT

2×2

((
mx

my

)
−
(
t1
t2

))
, (23)

where λ is the unknown depth.
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Figure 3. Reprojection errors for the radar experiment using the proposed method. Left: Camera image. Middle: Radar image. Right:
Homography.. See Section 5 for more details on the experiment.

Figure 4. Reconstruction results for the two datasets (top and bottom respectively). Left shows the view from one side, and right shows the
view from the top (i.e. in the direction of the orthographic camera). The 3D points are shown in blue, and the estimated camera and radar
positions and orientations are given in yellow and red respectively. One can see that we get consistent relative pose estimated for the two
datasets.
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