
CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point Clouds
Supplementary Material

Eric-Tuan Lê1∗ Minhyuk Sung2∗ Duygu Ceylan3 Radomir Mech3 Tamy Boubekeur3 Niloy J. Mitra1,3

1University College London 2KAIST 3Adobe Research

In this supplementary, we first evaluate the ability of our
approach to process real scan data with real noise pattern
(Section S.1). Then, we visualize zoomed-in renderings of
CPFN outputs to demonstrate its ability to capture smaller
primitives compared to the baselines (Section S.2). We fur-
ther report the performance of CPFN in terms of memory
and computational complexity (Section S.3). Then, we pro-
vide an individual evaluation of both the patch selection
network accuracy (Section S.4) and the merging strategy
against a widely used commercial solver Gurobi [1] (Sec-
tion S.5).

We then further evaluate CPFN by varying the input res-
olution (Section S.6) and the value of the primitive scale
threshold η (Section S.7). We also evaluate the impact of
the value of the target number of primitives Kglob and Kloc
on shapes with fewer primitives (Section S.8). Then, we re-
port the performance of the global SPFN using a new sam-
pling strategy based on curvature to create the low resolu-
tion point clouds (Section S.9). We also assess alternative
patch selections by sampling patches either on parts with
poor detection with the global SPFN (Section S.10) or with
high curvature areas (Section S.11).

We finally provide additional details on our ar-
chitecture (Section S.12). Our implementation in
Pytorch is publicly available on our GitHub page:
https://github.com/erictuanle/CPFN

S.1. Qualitative Evaluation on Real Scan Data

We tested our CPFN with the real scans provided by [3].
The resolution of the provided scans is much lower than our
synthetic dataset: only 20k points compared to 128k points
used in our experiments. The pattern and the scale of the
noise are also significantly different with our previous ex-
periments. Yet, CPFN provides reasonable results as shown
in Figure S1.

∗This work was partly done when E. Lê interned and M. Sung worked
at Adobe Research.

Figure S1. CPFN results on real scans (from [3]).

S.2. Qualitative Evaluation of Small Primitive De-
tection and Fitting

To visually assess the efficiency of CPFN in detect-
ing small primitives, we visualize in Figure S2 zoomed-
in renderings of the predictions for smaller primitives. As
shown, our CPFN pipeline improves significantly the detec-
tion and the fitting of the smaller primitives compared to the
RANSAC [7] and SPFN [3] baselines.

S.3. Memory and Computation Complexity

To run SPFN [3] at training time, one would need to dou-
ble the average consumer GPU memory for a batch size of 8
for the high resolution Traceparts dataset while our method
could still be applicable for even higher resolutions.

At test time, CPFN only requires three forward passes -
through the patch selection network (∼0.02s) and the global
(∼0.25s) and local (∼0.22s) SPFN respectively - followed
by the merging step (∼0.43s). Note that our heuristic merg-
ing step takes less than one second per scan, which is in-
comparably faster than running a commercial optimization
solver as described in Section S.5. Both SPFN [3] and
CPFN have similar memory footprint at test time.

S.4. Quantitative Evaluation of the Patch Selection
Network

We assess the accuracy, precision and recall of our patch
selection network trained to identify the regions which are
likely to contain small primitives at test time. We report the
quantitative results in Table S1 for varying scales of primi-
tives, i.e., η ∈ {1%, 2%, 3%, 4%, 5%} (see Section 3.4).

By increasing the value of η, we enlarge the set of prim-
itives considered as small and as such, we also increase the
number of local patches to retrieve. The accuracy of our
patch selection network varies between 87.96% and 98.46%



GT
Primitives

RANSAC
[7]

SPFN [3]

CPFN - 5%

GT
Primitives

RANSAC
[7]

SPFN [3]

CPFN - 5%

Figure S2. Primitive fitting results for RANSAC, plain SPFN and our CPFN networks (Rows 1-4) and zoomed-in visualizations on smaller
primitives (Rows 5-8). RANSAC and SPFN directly operate on the global object failing on the small primitives. Our CPFN pipeline
estimates the heatmaps corresponding to small primitives at different scales and learns a better primitive decomposition on local patches
sampled from such regions improving the detection of small primitives.

but slightly decreases with the scale. The average precision
and recall is 57.21% and 52.75% respectively emphasizing
that identifying fine-scale regions in a low-resolution point
cloud is a challenging task. Nevertheless, our pipeline is not
that sensitive to the accuracy of the patch selection stage. In
fact, in our ablation studies (Table 1, row 14 in the paper),
we show that a perfect patch selection has a marginal impact
on the output performance.

Table S1. Accuracy and precision/recall trade-off of our patch se-
lection network trained to identify small primitives, i.e. primitives
with less than η ·N points (see Section 3.4).

Scale η Accu. Prec. Recall TP FP TN FN

1% 98.46 60.85 37.14 0.66 0.43 97.79 1.12
2% 96.27 57.65 52.82 2.29 1.68 93.98 2.05
3% 91.98 54.65 53.25 4.70 3.90 87.28 4.12
4% 88.99 54.23 59.35 7.20 6.08 81.79 4.93
5% 87.96 58.65 61.21 8.99 6.34 78.79 5.70

S.5. Quantitative Evaluation of our Merging
Heuristic Compared to a Binary Program-
ming Solver

As explained in Section 3.3, our segment merging prob-
lem is a quadratic binary programming problem. Thus,
instead of using our Hungarian-algorithm-based merging
method, we tried a commercial solver, Gurobi [1] (using
a branch-and-bound algorithm), and compared the perfor-
mance with ours in terms of both the computation time
and the segmentation accuracy after the merging. Since
the branch-and-bound method may take a huge amount of
time, we set the time limit to 10 mins. When we tested both
methods with 26 randomly picked test cases, in 22 cases
out of them, Gurobi failed to find the optimum solution in
10 mins. Contrarily, our method took 0.43 secs on aver-
age. The resulting mIoU of Gurobi for the random 26 cases
was 50.54%, while our heuristic achieved 81.42%. This
gap in performance highlights that even after 10 mins, the
last solution found by Gurobi is still far away from opti-
mum. Even when Gurobi managed to get a better solution
than ours (with a lower energy in the optimization) before
the 10 mins limit, the improvement on mIoU was marginal:



+0.09%.

S.6. Quantitative Evaluation of CPFN with Differ-
ent Point Cloud Resolutions

We report the per-primitive-type mIoU in Table S2 at two
different input resolutions - 16k and 128k. The comparison
between the results of SPFN [3] and our CPFN at 16k and
128k shows that higher resolutions take more benefits from
our two-level prediction architecture.

Also CPFN performs better than SPFN [3] for all prim-
itive types. The gap between the highest (Sphere) and the
lowest (Cone) mIoUs is also smaller compared to SPFN [3],
meaning that our performance is more balanced across the
different primitive types.

Table S2. Percentages of each primitive type (top row) and mean
IoUs of SPFN [3] and CPFN for each type at 16k and 128K input
resolutions.

Type Cone Cylinder Plane Sphere

Pct. Primitives 26.95 29.23 39.98 3.84

16k SPFN 56.51 67.29 66.11 82.70
CPFN 68.85 75.94 74.83 86.68

128k SPFN 57.13 67.54 66.38 83.24
CPFN 76.46 77.85 80.57 87.79

S.7. Impact of the Primitive Scale Threshold η

We analyze the effect of an increase for the value of the
primitive scale threshold η (see Section 3.4), which is the
maximum scale that can be selected by our patch selection
network, in Table S3. Doubling η from 5% to 10% brings a
slight increase in the performance for the bigger primitives
but reduces the ability to detect small primitives.

Table S3. Segmentation accuracy of CPFN at various primitive
scales with two different η values 5% and 10%. Each scale bucket
contains roughly the same number of primitives

Scale ∼1% 1%∼2% 2%∼4% 4%∼12% 12%∼

RANSAC [4] 34.68 40.38 56.78 70.63 69.50
SPFN [3] 44.25 55.53 70.12 74.29 79.75
CPFN - 5% 65.74 77.31 84.19 83.55 83.95
CPFN - 10% 65.58 77.49 84.31 85.16 84.66

S.8. Impact of the Values of the Maximum Number
of Primitives Predicted by each SPFN Kglob
and Kloc

We set reasonably big numbers for Kglob and Kloc (see
Section 3.3) to handle all test cases in our dataset. But, ob-
viously we cannot set very huge numbers due to the GPU
memory issue — many neural networks including SPFN [3]
have the same technical issue. If the input scan has a huge
number of primitives, as an alternative, we can consider
using only local SPFN with small size patches. Table S4
shows how the performance of our CPFN changes when the

number of primitives in an input varies for the fixed values
of Kglob = 28 and Kloc = 21. One worthwhile observation
is that setting big numbers to Kglob and Kloc does not affect
the case of having a few primitives in the input scan

Table S4. Segmentation accuracy (%) of CPFN with respect to
the number of primitives in the input shape.

Nb Primitives 3∼8 8∼12 12∼14 14∼25

CPFN (η = 5%) 78.58 81.36 83.17 74.61

S.9. Curvature-based Importance Sampling for the
Global SPFN

Instead of generating the low-resolution point cloud with
FPS sampling only, we evaluate a new importance sampling
strategy based on curvature. We first estimated point cur-
vatures directly from the point cloud via jet-fitting using
CGAL [4] with default parameters. (We clipped outlier val-
ues due to numerical instabilities.) We trained SPFN using
low-resolution point clouds sampled in two steps: (i) half
of the points were sampled using FPS sampling, and (ii)
the remaining half was randomly sampled proportionally to
mean curvature. For the Traceparts [6] dataset, we obtain
an mIoU of 65.49%, which is lower than 66.29% with the
full FPS based sampling and also 79.64% with our CPFN
pipeline.

S.10. Patch Selection Based on Global SPFN IoUs

In order to assess our sampling strategy described in Sec-
tion 3.4, we compare two types of heatmaps: (i) the heatmap
highlighting areas with low global SPFN mIoU and (ii)
the heatmap estimated by our patch selection network to
identify small primitives. As shown in Figure S3, both
heatmaps have high values in similar areas, meaning that
sampling patches from either heatmap will produce similar
patch samples. The last column in the figure (column 11) is
an exceptional case when the global SPFN fails to properly
segment large primitives due to their proximity.

S.11. Patch Selection Based on Curvature

We also tried estimating the point heatmaps based on the
previously computed mean curvature. We sampled patches
from the top 20% points with the highest mean curvature
at training and test time. This approach did not perform as
good as our original CPFN pipeline: 76.00% mIoU com-
pared with 79.64% of ours as high curvature areas do not
cover all of the small primitives.

S.12. Implementation and Training Details

We provide a more detailed description of our archi-
tecture and parameters used in our experiments. We first
explain the design of both the global and local SPFN in



Section S.12.1 and the patch selection network in Sec-
tion S.12.2. We then detail how we pre-processed the
dataset (Section S.12.3) and the optimization parameters
used for the training (Section S.12.4). We finally explain
how the full pipeline operates at training (Section S.12.5)
and test time (Section S.12.6).

S.12.1 Supervised Primitive Fitting Network (SPFN)

Throughout our experiments, we use our re-implementation
of the SPFN [3] pipeline in Pytorch.

SPFN [3] is itself based on a single-scale PointNet++ [5]
for which the default hyperparameters are used. The de-
fault PointNet++ implementation is designed as an encoder-
decoder architecture, which progressively decreases the
point cloud resolution with depth, from the input resolu-
tion to 512, 128 and finally to a single point vector. The
decoder symmetrically upsamples the point cloud to the in-
put resolution. After a common linear layer, the last Point-
Net++ [5] layers is replaced to produce three per-point out-
puts for the segmentation W, the type T and the normal N
from three dense layer heads. On top of PointNet++ back-
bone, SPFN [3] (see Section 3.1) computes the primitive
parameters based on the network outputs and supervises
the training on five different losses: (i) segmentation loss
Lseg, (ii) normal loss Lnorm, (iii) primitive type loss Ltype,
(iv) residual loss Lres, i.e., fitting loss, and (v) axis loss Laxis.

We keep unchanged almost all implementation details
from the original Tensorflow implementation. All hyper-
parameters are kept identical for both of our SPFN-based
sub-networks, i.e., global (Section 3.1) and local SPFN
(Section 3.2). We train separately the global and local
SPFN since they act on different scales of the input point
cloud. As explained in the paper, we modify the local
SPFN to use the global lo and local context lgi extracted
from the global SPFN by feeding an augmented latent code
l
′

i = [li, lo, lgi ] to the decoder. The first module from
the decoder is thus modified to accept the additional input
channels. Another difference is the maximum number of
primitives each SPFN instance can predict. As global ob-
jects are likely to contain more primitives than patches, the
global SPFN is trained to be able to predict more primitives
(Kglob) than the local SPFN counterpart (Kloc). This boils
down to change the number of output channels of the seg-
mentation head to the desired number of primitives. For the
TraceParts [6] dataset, we fix Kglob = 28 and Kloc = 21
which are respectively the maximum number of primitives
in a single object and in a single patch found in the dataset.

Both SPFNs are trained using ground truth information
extracted from the CAD models, either at the object- or the
patch-level: (i) point-to-primitive assignment, (ii) point nor-
mals, (iii) primitive types and (iv) primitive axis (except for
spheres).

S.12.2 Patch Selection Network

The patch selection network (Section 3.4), also based on
the same default PointNet++ [5] implementation, produces
a single binary classification tensor and is trained using the
binary cross-entropy loss. Thus, we replace the last linear
layer of the backbone PointNet++ [5] by a new one with 2
output channels. The GT small-primitive heatmaps for su-
pervision are based on the primitives which area are smaller
than a threshold η.

S.12.3 Dataset Parameters

The Traceparts [6] dataset is pre-processed to merge adja-
cent primitives sharing the same parameters and discard ex-
tremely tiny primitives. Differently to [3], only primitives
with an area smaller than 0.5% (instead of 2%) of the en-
tire object are discarded to make sure smaller primitives are
included in the dataset. Higher resolution point clouds al-
low our approach to capture accurately small primitives that
were originally discarded. The point clouds are normal-
ized to the unit sphere and randomly perturbed with uni-
form noise [−5e− 3, 5e− 3] along the ground truth normal
direction. For comparison, the average sampling distance
(ds ≈ 5e− 3) is equivalent to that noise level.

S.12.4 Optimization Parameters

For all SPFN modules, we use a batch size of 16 samples
with both (i) a learning decay (initial learning rate 10−3

with staircase learning decay 0.7) and (ii) a batch norm de-
cay (initial batch norm decay 0.5 with staircase decay 0.5).
For optimization, we use Adam [2] with β coefficients of
0.9 and 0.999 for the gradient and its square respectively.
For the patch selection network, the same set of training pa-
rameters are used except the batch size which is increased
to 32.

The global SPFN and the patch selection network are
trained with 100 epochs. The local SPFN input dataset is
much bigger than the original dataset as multiple patches
will be sampled on the same object. Thus, we fix the num-
ber of epochs for the local SPFN so that all trainings have
the same number of iterations.

S.12.5 CPFN Pipeline at Training Time

Our full CPFN pipeline is trained as a sequential cascaded
process. We first train the global SPFN (Section 3.1) and
the patch selection network (Section 3.4) on downsampled
point clouds n = 8192. The output of the global SPFN pro-
vides an initial primitive decomposition of the input object
with poor accuracy on small primitives. The patch selec-
tion network is thus trained to learn how to sample patches
in those smaller primitive scale areas. The patch selection



1-mIoU

Scale < η

Figure S3. Comparison between the heatmap of global SPFN IoUs and the heatmap highlighting small primitive areas with η = 5%. Both
heatmaps highlight similar areas for most of the objects, showing that sampling patches from either heatmap will produce similar patch
samples. Heatmaps are displayed with the Jet color map going from blue to green to red.

network is only used at test time when primitive informa-
tion is not available. To improve on the initial global SPFN
outputs, we train in turn our local SPFN (Section 3.2) on
patches of n = 8192 points randomly samples in GT small
primitive areas. The patches are sampled sequentially to
cover as much as possible all small primitives. At each it-
eration, a new patch is sampled on small primitives from a
random query point that has not yet been covered by any
of the previous patches. We limit the maximum number of
patches for a given object to 32. To provide both local and
global context to this local SPFN, we augment the patch
latent vector with the object latent vector lo and the patch
centroid’s features lgi , both extracted via the trained global
SPFN.

S.12.6 CPFN Pipeline at Test Time

At test time, we run in parallel the global SPFN and the
patch selection network to generate respectively the initial
primitive decomposition and the small primitive heatmap.
Contrary to the training, the global SPFN is tested on the
high-resolution version of the point cloud. However, the
patch selection network is still tested on the low-resolution
point cloud. The heatmap - produced by the patch selec-
tion network - generates values in [0, 1] for each of the
n = 8192 points - higher values meaning higher chances
for the point to be part of a small primitive. Then patches
are randomly sampled in areas where the predicted value
is above θ = 0.5 so that all such points are covered by
at least one patch. The local SPFN is then run on those
newly sampled patches to refine the fitting on the smaller
primitives. Finally, the segments from both the global and
the local SPFNs are merged to produce the final primitive
decomposition with improved performance on small prim-
itives by following the process explained in Section 3.3 of
the paper.

References
[1] LLC Gurobi Optimization. Gurobi optimizer reference man-

ual, 2020. 1, 2
[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 4

[3] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and
Leonidas Guibas. Supervised fitting of geometric primitives
to 3D point clouds. In CVPR, 2019. 1, 2, 3, 4

[4] Sven Oesau, Yannick Verdie, Clément Jamin, Pierre Alliez,
Florent Lafarge, and Simon Giraudot. Point set shape detec-
tion. In CGAL User and Reference Manual. CGAL Editorial
Board, 4.13 edition, 2018. 3

[5] Charles Ruizhongtai Qi, Ly Yi, Hao Su, and Leonidas J.
Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. In NIPS, 2017. 4

[6] TraceParts S.A.S. Traceparts. 3, 4
[7] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient

RANSAC for point-cloud shape detection. Computer Graph-
ics Forum, 2007. 1, 2


