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In this supplemental document, we provide the following contents, which were not presented in the main paper due to
space limitations:

• Detailed implementation of proposed forgery synthesis workflow.
• Answers for the quiz in the main paper.
• Additional visualization of OpenForensics dataset.
• Additional dataset analysis.
• Additional user study results.
• Additional benchmark results.

1. Implementation of Forgery Synthesis Workflow

Figure 1. Dataset construction workflow: 1) collect raw images and manually select real face images; 2) synthesize forged face images
(for each original extracted face, new identities are repeatedly generated until swapped faces can spoof our simple classifier); 3) perform
face-wise multi-task annotation.

Figure 1 shows an overview of the process used to synthesize forged face images. First, all faces in the images are
extracted using pre-trained FaceBoxes [32]. Next, for each feasibly manipulated face, we extract its identity latent vector.
The facial identity is then modified and fed into fake identity generators to generate a new face. The synthesized face is
subsequently transformed into the original pose via Homography transformation1 and blended into the original face using

*Corresponding author. Email:ltnghia@nii.ac.jp. This work was partially supported by JSPS KAKENHI Grants (JP16H06302, JP18H04120,
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Poisson blending [19] and a color adaptation algorithm, with the final result being a new identity. After that, if the new
identity image successfully spoofs the forgery justification network, it is overlaid onto the original image; otherwise, it is
discarded.

1.1. Manipulable Area Identification

We introduce two types of manipulable areas: regions inside facial landmarks or entire face.
Facial Landmark Detection: To identify feasible manipulation regions, we extract 68 facial landmark points, resulting

in fine boundaries and complete facial coverage. 3D facial landmarks are useful for presenting the face under different poses
and occlusions, but they do not accurately present face boundaries. Hence, we propose to combine both 3D and 2D facial
landmarks to present human poses. In particular, we employed 3DDFA-V2 [9], which was trained on 300W-LP dataset [35],
to extract inside 3D facial landmarks, and Dlib [14], which was trained on iBUG300-W dataset [23], to extract 2D landmarks
across face boundary. We used pre-trained models provided by the authors.

Face Segmentation: We adopted Bilateral Segmentation Network (BiSeNet) [30] to segmentation face regions2. The
BiSeNet model was trained on CelebAMask-HQ dataset [15] for 80,000 iterations and warmup of 1000 steps with batch size
of 16. Stochastic Gradient Descent (SGD) optimization was used with a weight decay of 0.0005 and momentum of 0.9. The
base learning rate was initialized as 0.01 and reduced via the poly learning rate strategy with power 0.9 [15]. We remark that
we combined all facial elements such as eyes, nose, mouth, skin to obtain the face region.

1.2. Fake-Identity Generators

To synthesize faces with high resolution (i.e., 512 × 512 or 1024 × 1024 pixels) and visual quality, we employed Inter-
FaceGAN [24] (i.e., GAN-based generator) and ALAE [20] (i.e., Autoencoder-based generator). We used pre-trained models
provided by the authors, in which InterFaceGAN was trained on CelebA-HQ dataset [12], and ALAE was trained on FFHQ
dataset [13]. Given a face image, we modified and reconstructed it with a new identity using these generators randomly.
In particular, we first extracted the facial identity latent vector via the encoder of the network. Small random factors were
adaptively multiplied with the latent vector to edit its attributes (i.e., age, gender, and smile). The manipulated latent vector
was then fed into the decoder to reconstruct the face with a new fake identity.

1.3. Forgery Justification Network

To control the quality of new identity images, we trained a simple forgery classifier (i.e., XceptionNet [6]) to reject low-
quality fake images. We remark that we do not train a strong network to avoid rejecting all generated images. We build a
pseudo database with 50,000 images by pasting synthesized faces into the original images without any visual improvement
(i.e., Poisson blending [19] and color adaptation) as the fake label. We used original faces as the real label. XceptionNet
was trained from scratch with a base learning rate of 0.0001 on DFDC dataset [7] for 10 epochs and then finetuned on our
pseudo database for only 2 epochs. We set the size of each mini-batch to 64 and employed binary cross entropy loss. Adam
optimization was used with moments β1 = 0.9 and β2 = 0.999. We also applied simple augmentations such as resizing,
cropping, translation, rotation, flipping.

2. OpenForensics Dataset

Figure 2. Answers to question posed in Fig. 1 in main paper showing overlaid manipulated areas (best viewed online in color with zoom-in).

2https://github.com/zllrunning/face-parsing.PyTorch

https://github.com/zllrunning/face-parsing.PyTorch


Figure 3. Additional examples of standard images in OpenForensics dataset with overlaid ground truths.



2.1. Face Blending

Our use of Poisson blending [19] and a color adaptation algorithm to reduce the color mismatch between the synthesized
and the original face enhances the naturalness of the forged faces (Fig. 4).

Figure 4. From top to bottom: Original faces (top), forged faces without (middle) and with (bottom) Poison blending and color adaptation.
Note the reduced color mismatch between the synthesized and non-synthesized face regions. This blending method with color correction
is used for all forged faces in the OpenForensics dataset.



We also improve the smoothness of the blending mask by extracting 68 facial landmark points and training face segmen-
tation models, resulting in fine boundaries and complete facial coverage (see Fig. 5 for different blending masks).

Figure 5. From left to right: blending masks in OpenForensics smoothly cover important facial parts inside facial landmarks with soft
boundary (left) or completely cover the entire face (right).



2.2. Face-Wise Rich Annotation

We aim to exploit the face-wise ground truth, which requires much more annotation effort, to advance further forgery
analysis. Each face was labeled with various ground truths such as forgery category (real/fake), bounding box, segmentation
mask, forgery boundary, and facial landmarks (cf. Fig. 6). Our rich annotation can be utilized for various tasks and even
multi-task learning.

Figure 6. Face-wise multi-task ground truth in OpenForensics dataset (best viewed online in color with zoom-in). From left to right, image
is followed by overlaid ground truth bounding box and segmentation mask, forgery boundary, and general facial landmarks.



2.3. Scenario Augmentation

To enhance the challenges posed by our OpenForensics dataset for real-world face forgery detection and segmentation,
we applied various perturbations to better simulate contexts in natural scenes, resulting in a test-challenge subset. Various
augmented operators are divided into overarching groups.

• Color manipulation: Hue change, saturation change, brightness change, histogram adjustment, contrast addition,
grayscale conversion.

• Edge manipulation: edge detection and alteration.
• Block-wise distortion: color grouping, color pooling, color quantization, and pixelation.
• Image corruption: elastic deformation, jigsaw distortion, JPEG compression, noise addition, and dropout.
• Convolution mask transformation: Gaussian blurring, motion blurring, sharpening, and embossing.
• External effect: fog, cloud, sun, frost, snow, rain, and spatter.

These augmentations are divided into three intensity levels (i.e., easy, medium, and hard) to ensure diverse scenarios. For
each level, random-type augmentation is applied separately or as a mixture (cf. Fig. 7). Example images in test-challenge set
are shown in Fig. 8.

Color manipulation
Edge manipulation
Block-wise distortion
Image corruption
Convolution mask transformation
External effect

Figure 7. Six-group augmentations used to generate test-challenge subset. Different augmented operators are mixed randomly with various
parameters to increase diversity of scenarios.



Figure 8. Examples of test-challenge set with overlaid manipulated areas.



3. Additional Dataset Analysis
3.1. Image Scene

Images and videos in existing datasets [22, 17] have been collected from a limited number of scenes, such as indoor scenes
and TV shows. In contrast, the OpenForensics dataset contains images from a wide variety of scenes. We computed image
scenes using a model pre-trained on the large-scale Places2 dataset [33]. Figure 9 shows the distribution of image scenes in
the OpenForensics dataset, of which 36.3% are outdoor scenes.
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Figure 9. Scene distribution in OpenForensics dataset. Red represents indoor scenes (63.7%), and blue represents outdoor scenes (36.3%).
Best viewed online in color with zoom-in.



3.2. Gender and Age

Female
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a) Gender b) Age c) Mutual dependencies
Figure 10. Mutual dependencies of age and gender in OpenForensics dataset. A thicker arc indicates a higher probability of one attribute
correlating to another. Best viewed online in color with zoom-in.

The gender and age of persons in the OpenForensics dataset are exploited using pre-trained convolutional neural networks
(CNNs) [1, 2]. Figure 10 shows the ratios of age and gender and their mutual dependencies in the OpenForensics dataset.
The ratios of male and female are mostly equal, 49% and 51%, respectively; 5% are children (under 10), 4% are teenagers
(10–20), 83% are adults (21–60), and 8% are seniors (60+).

4. Additional User Study Results
4.1. Additional Result of Face Forgery Classification

Figure 11 shows confusion matrices of the user study of face forgery classification tasks on different datasets.
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Figure 11. Human performance in face forgery classification on deepfake datasets. Images in OpenForensics dataset were most effective
in spoofing all participants.



5. Benchmark Suite Details
5.1. Baseline Methods

We trained and evaluated existing instance detection and segmentation methods in various scenarios: MaskRCNN [10],
MSRCNN [11], RetinaMask [8], YOLACT [3], YOLACT++ [4], CenterMask [16], BlendMask [5], PolarMask [29], ME-
Inst [31], CondInst [25], SOLO [27], and SOLO2 [28]. MaskRCNN [10] and MSRCNN [11] are well-known two-stage
models that perform detect-then-segment. The YOLACT family [3, 4] includes early single-stage methods, which are based
on anchor-free object detection [34, 26]that are aimed at real-time performance. The remaining methods are widely used
modern single-stage methods aimed at solving accuracy and processing time problems.

MaskRCNN [10], the first end-to-end instance segmentation model, was extended from Faster R-CNN [21] by adding a
branch for predicting an object mask that is parallel with the existing branch for detecting a bounding box.

MSRCNN [11] was extended from Mask R-CNN by integrating two segmentation head-networks to improve the quality
of segmented instances.

RetinaMask [8] was extended from RetinaNet [18] by integrating an instance mask prediction head network.
YOLACT [3] and YOLACT++ [4] are aimed at real-time performance by breaking the segmentation process into two

parallel subtasks (i.e., generating a set of prototype masks and predicting per-instance mask coefficients) and then linearly
combining the masks with the coefficients.

BlendMask [5] and CenterMask [16] were extended from YOLACT by blending cropped prototype masks with a finer-
grained mask within each bounding box.

PolarMask [29] formulates the instance segmentation problem as instance center classification and dense distance regres-
sion in a polar coordinate.

MEInst [31] and CondInst [25] utilize fully convolutional networks to produce masks.
SOLO [27] and SOLO2 [28] reformulate the instance segmentation as category prediction and mask generation to directly

output masks without computing bounding boxes.

5.2. Overall Evaluation
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Figure 12. Benchmark results for multi-face forgery multi-task on OpenForensics dataset. Test-dev set results reflect benchmark perfor-
mance for standard images while test-challenge set results reflect robustness for unseen images. Lower oLRP is better while higher AP is
better. BlendMask was best method and YOLACT++ was most robust method.



5.3. Results on Val Set
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Figure 13. Benchmark results for multi-face forgery detection and segmentation on Val set. From left to right, multi-face forgery detection
and multi-face forgery segmentation. Lower oLRP is better while higher AP is better. BlendMask was best method on both metrics for all
subsets. Best viewed online in color with zoom-in.

Table 1. Benchmark results for multi-face forgery detection and segmentation on Val set using AP and oLRP. Higher AP is better while
lower oLRP is better. Best and second-best results are shown in blue and red, respectively.

Method Year Multi-Face Forgery Detection Multi-Face Forgery Segmentation
AP↑ APS↑ APM↑ APL↑ oLRP↓ oLRPLoc↓ oLRPFP ↓ oLRPFN↓ AP↑ APS↑ APM↑ APL↑ oLRP↓ oLRPLoc↓ oLRPFP ↓ oLRPFN↓

MaskRCNN [10] ICCV 2017 76.9 33.9 73.4 78.0 27.4 10.1 4.2 5.6 82.0 20.1 74.4 84.1 23.7 7.8 3.8 6.4
MSRCNN [11] CVPR 2019 76.8 34.0 73.7 77.8 27.4 10.2 3.9 5.3 83.7 21.2 77.2 85.1 23.4 8.0 3.3 5.9
RetinaMask [8] arXiv 2019 78.8 34.1 74.6 79.9 26.1 9.3 3.9 5.8 81.9 22.1 74.1 83.7 24.2 8.1 4.1 5.9
YOLACT [3] ICCV 2019 66.7 21.5 59.0 67.7 39.0 13.7 7.6 9.6 72.3 4.9 58.1 74.4 35.1 11.2 7.7 9.8
YOLACT++ [4] TPAMI 2020 71.3 27.7 66.7 72.3 33.8 12.4 5.5 7.0 76.9 9.4 65.8 78.9 29.6 9.9 5.6 7.2
CenterMask [16] CVPR 2020 83.1 35.9 77.8 84.2 24.1 7.2 4.4 8.0 85.8 21.0 77.7 87.5 23.9 6.4 5.5 8.6
BlendMask [5] CVPR 2020 85.2 38.8 79.3 86.1 22.1 6.5 3.0 8.6 88.1 25.7 79.6 89.6 20.5 5.4 3.3 8.5
PolarMask [29] CVPR 2020 82.3 32.7 77.5 83.2 23.7 7.1 3.2 8.8 83.2 19.2 75.8 84.6 23.9 7.2 3.2 8.8
MEInst [31] CVPR 2020 79.6 32.9 75.2 80.6 27.2 8.2 5.1 9.5 79.1 20.4 73.4 80.4 28.4 8.7 5.2 9.7
CondInst [25] ECCV 2020 81.9 34.7 77.4 82.8 23.1 7.9 3.0 6.5 86.8 22.6 77.5 88.4 19.8 6.0 3.0 6.5
SOLO [27] ECCV 2020 - - - - - - - - 84.8 19.8 77.5 86.4 22.7 7.0 3.4 7.7
SOLO2 [28] NeurIPS 2020 - - - - - - - - 83.0 17.1 75.2 84.7 24.4 7.4 4.9 7.4

5.4. Class-Wise Evaluation

We report the results for each method in two categories, ‘Real’ and ‘Fake’: APReal, APFake, oLRPReal, and oLRPFake.
Notably, we observed high detection performance by BlendMask for the ‘Fake’ category, as shown in Table 2. For the
‘Real’ category, the modern single-stage methods (i.e., BlendMask and CenterMask) achieved the highest AP while the two-
stage methods (i.e., RetinaMask and MSRCNN) tended to have a lower oLRP error. In addition, BlendMask had the best
segmentation performance for forged faces along with the best results for both AP and oLRP error (cf. Table 2). BlendMask
and MSRCNN had the best segmentation performance for real faces.



Table 2. Class-wise performance on test-dev set. Higher AP is better while lower oLRP error is better. Best and second-best results are
shown in blue and red, respectively.

Method Year Multi-Face Forgery Detection Multi-Face Forgery Segmentation
APReal↑ APFake↑ oLRPReal↓ oLRPFake↓ APReal↑ APFake↑ oLRPReal↓ oLRPFake↓

MaskRCNN [10] ICCV 2017 81.0 77.3 25.1 23.4 85.4 81.8 22.7 19.6
MSRCNN [11] CVPR 2019 81.2 76.9 24.9 23.8 87.6 82.7 22.0 20.1
RetinaMask [8] arXiv 2019 83.2 76.8 24.2 24.1 86.4 79.3 22.8 22.3
YOLACT [3] ICCV 2019 72.1 64.1 36.9 37.5 78.8 66.2 32.3 35.6
YOLACT++ [4] TPAMI 2020 76.9 68.9 30.6 32.4 83.2 71.4 26.9 29.4
CenterMask [16] CVPR 2020 83.2 87.8 26.6 15.6 86.3 88.1 26.7 16.0
BlendMask [5] CVPR 2020 84.3 89.6 25.2 13.8 88.4 90.1 22.7 13.8
PolarMask [29] CVPR 2020 82.0 87.9 26.3 15.1 83.7 86.2 26.0 16.7
MEInst [31] CVPR 2020 80.8 84.7 29.4 18.2 81.9 82.4 29.2 21.0
CondInst [25] ECCV 2020 81.6 86.4 26.2 15.4 86.9 88.6 22.7 13.9
SOLO [27] ECCV 2020 - - - - 85.6 87.5 23.9 16.2
SOLO2 [28] NeurIPS 2020 - - - - 85.3 84.9 25.0 18.1

Table 3. Class-wise performance on test-challenge set. Higher AP is better while lower oLRP error is better. Best and second-best results
are shown in blue and red, respectively.

Method Year Multi-Face Forgery Detection Multi-Face Forgery Segmentation
APReal↑ APFake↑ oLRPReal↓ oLRPFake↓ APReal↑ APFake↑ oLRPReal↓ oLRPFake↓

MaskRCNN [10] ICCV 2017 45.3 38.8 64.1 66.7 47.9 39.5 62.6 66.2
MSRCNN [11] CVPR 2019 45.7 38.8 64.0 66.7 46.3 40.2 62.4 65.7
RetinaMask [8] arXiv 2019 49.0 48.1 63.0 63.7 50.5 45.6 61.9 64.8
YOLACT [3] ICCV 2019 50.8 47.9 60.8 59.5 55.5 48.0 57.8 59.0
YOLACT++ [4] TPAMI 2020 55.6 51.9 57.5 56.6 56.8 52.5 55.2 55.7
CenterMask [16] CVPR 2020 0.02 0.05 99.7 99.4 0.01 0.04 99.7 99.5
BlendMask [5] CVPR 2020 53.1 54.7 60.9 59.4 54.6 53.4 59.7 60.1
PolarMask [29] CVPR 2020 49.9 53.6 62.8 57.9 51.6 53.8 62.2 58.2
MEInst [31] CVPR 2020 44.6 47.5 66.6 66.1 45.2 46.8 66.4 66.1
CondInst [25] ECCV 2020 51.5 53.9 62.5 58.9 54.2 54.0 60.6 58.6
SOLO [27] ECCV 2020 - - - - 55.9 55.8 59.6 55.7
SOLO2 [28] NeurIPS 2020 - - - - 53.1 53.4 62.0 57.1

Table 4. Class-wise performance on Val set using AP and oLRP. Higher AP is better while lower oLRP is better. Best and second-best
results are shown in blue and red, respectively.

Method Year Multi-Face Forgery Detection Multi-Face Forgery Segmentation
APReal↑ APFake↑ oLRPReal↓ oLRPFake↓ APReal↑ APFake↑ oLRPReal↓ oLRPFake↓

MaskRCNN [10] ICCV 2017 75.9 78.0 31.6 23.2 81.0 83.0 28.5 18.9
MSRCNN [11] CVPR 2019 76.3 77.2 30.9 23.9 83.9 83.4 27.1 19.7
RetinaMask [8] arXiv 2019 79.0 78.6 29.3 22.8 82.7 81.1 27.5 20.9
YOLACT [3] ICCV 2019 67.3 66.0 42.2 35.8 76.1 68.5 36.6 33.5
YOLACT++ [4] TPAMI 2020 72.8 69.9 35.8 31.8 81.1 72.8 31.0 28.3
CenterMask [16] CVPR 2020 77.7 88.5 33.3 14.9 82.0 89.4 32.6 15.2
BlendMask [5] CVPR 2020 79.5 90.9 31.6 12.7 84.3 91.8 28.6 12.5
PolarMask [29] CVPR 2020 75.6 89.0 33.4 14.0 78.6 87.8 18.4 29.7
MEInst [31] CVPR 2020 73.8 85.5 37.0 17.4 75.2 83.1 37.0 20.0
CondInst [25] ECCV 2020 76.9 87.0 31.1 15.0 82.9 90.6 27.2 12.4
SOLO [27] ECCV 2020 - - - - 80.2 89.4 30.6 14.9
SOLO2 [28] NeurIPS 2020 - - - - 79.8 86.1 31.4 17.5
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