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In this supplementary material, we present additional
details on the models, training scheme, and experiments
that could not be included in the main text due to space
constraints. All tables, figures, equations, and references in
this supplementary file are self-contained.
Contents of the supplementary material The supplemen-
tary material is composed of the following. (1) Details of
our models. (2) Additional ablation study such as networks
design and hyper-parameter settings. (3) Additional experi-
mental results.

A. Details of Architectures

The detailed architectures of DepthNet, DAM, and Mo-
tionNet are specified in Table A1, Table A2, and Table A3,
respectively. Generic layers, e.g., conv, fc, pool, etc., are
specified starting with a lowercase letter. Nonlinear activa-
tion functions, e.g., ReLU, ELU, etc., are abbreviated for
visibility. The encoders of DepthNet and MotionNet are
both based on ResNet18 [4]. We declare the residual block
as ResBlock for each encoder.
DepthNet For the decoder of DepthNet, we adopt the struc-
ture of MonoDepth2 [2]. DepthNet can predict depth maps
with five scales, but we empirically found that single-scale
training produces better performance than multi-scale train-
ing. Thus, we predict the depth map from the last layer of
the decoder, which is activated with a sigmoid function.
MotionNet with DAM For DAM, we design the weighted
context and transforming operation for each ego-motion and
residual motion feature, respectively. We attach DAM after
the 2nd , 3rd , and 4th residual layer in the ResNet encoder of
MotionNet. In the case of the ResNet18 encoder, each resid-
ual layer is composed of two residual blocks. GCNet [1]
attached the attention module to each residual block, how-
ever, we empirically found that deploying DAM only after
the residual layer leads to a better trade off between perfor-
mance and computational time. The details of this ablation
is specified in Sec. B and examples of the spatial attention
map are visualized in Sec. C. The decoder of MotionNet has
multiple refining steps, which has been proposed by Gor-
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Figure A1. Different positional design options for DAM in a
residual layer. We validate two design choices for DAM: (a) after
every residual block (GCNet [1] style), and (b) after the last residual
block in each residual layer.
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Figure A2. Trends of motion field consistency loss in phase-2
for different DAM configurations. We train MotionNet on the
KITTI dataset from scratch, and plot its training loss.

don et al. [3]. Every refinement step aggregates the features
from the encoding layer and predictions from the lower layer.
Similar to DepthNet, we predict the residual motion field
with a single-scale, which is refined from the last layer of
the decoder.

B. Additional Ablation Study

In this section, we discuss additional ablation studies of
different design choices and hyper-parameter settings. We
follow the same configurations of experiments, e.g., dataset
and training scheme, which are described in Sec. 4.2. of our
main paper.
Different positional configurations of DAM As discussed



Type Name Kernel Stride Channel I/O In. resol. Out. resol. Input

Encoder

conv 0 7×7 2 3/64 256×832 128×416 image

maxpool 1 3×3 2 64/64 128×416 64×208 conv 0
ResBlock 1 1 – 1 64/64 64×208 64×208 maxpool 1
ResBlock 1 2 – 1 64/64 64×208 64×208 ResBlock 1 1

ResBlock 2 1 – 2 64/128 64×208 32×104 ResBlock 1 2
ResBlock 2 2 – 1 128/128 32×104 32×104 ResBlock 2 1

ResBlock 3 1 – 2 128/256 32×104 16×52 ResBlock 2 2
ResBlock 3 2 – 1 256/256 16×52 16×52 ResBlock 3 1

ResBlock 4 1 – 2 256/512 16×52 8×26 ResBlock 3 2
ResBlock 4 2 – 1 512/512 8×26 8×26 ResBlock 4 1

Decoder

conv 1 1 3×3 1 512/256 8×26 8×26 ResBlock 4 2
upsample 1 – – 256/256 8×26 16×52 conv 1 1

concat 1 – – (256,256)/512 16×52 16×52 upsample 1, ResBlock 3 2
conv 1 2 3×3 1 512/256 16×52 16×52 concat 1

conv 2 1 3×3 1 256/128 16×52 16×52 conv 1 2
upsample 2 – – 128/128 16×52 32×104 conv 2 1

concat 2 – – (128,128)/256 32×104 32×104 upsample 2, ResBlock 2 2
conv 2 2 3×3 1 256/128 32×104 32×104 concat 2

conv 3 1 3×3 1 128/64 32×104 32×104 conv 2 2
upsample 3 – – 64/64 32×104 64×208 conv 3 1

concat 3 – – (64,64)/128 64×208 64×208 upsample 3, ResBlock 1 2
conv 3 2 3×3 1 128/64 64×208 64×208 concat 3

conv 4 1 3×3 1 64/32 64×208 64×208 conv 3 2
upsample 4 – – 32/32 64×208 128×416 conv 4 1

concat 4 – – (32,64)/96 128×416 128×416 upsample 4, conv 0
conv 4 2 3×3 1 96/32 128×416 128×416 concat 4

conv 5 1 3×3 1 32/16 128×416 128×416 conv 4 2
upsample 5 – – 16/16 128×416 256×832 conv 5 1

conv 5 2 3×3 1 16/16 256×832 256×832 upsample 5
dispconv 3×3 1 16/1 256×832 256×832 conv 5 2
sigmoid – – 1/1 256×832 256×832 dispconv

Table A1. Details of DepthNet.

Type Name Kernel Stride Channel I/O In. resol. Out. resol. Input

Spatial
attention

conv 1 1 1×1 1 c/ c
2 h×w h×w feature

conv 1 2 1×1 1 c
2 /1 h×w h×w conv 1 1

softmax – – 1/1 h×w h×w conv 1 2

Transform

matmul – – c/c h×w 1×1 feature, softmax
conv 2 1 1×1 1 c/ c

4 1×1 1×1 matmul
conv 2 2 1×1 1 c

4 /c 1×1 1×1 conv 2 1
sum – – c/c h×w h×w feature, conv 2 2

Table A2. Details of DAM (single attention module).

in the previous section, there are two configuration options
where to deploy DAM in the encoder of MotionNet: DAM
after every residual block, or residual layer. Fig. A1 illus-
trates each configuration. In Table A4, we compare them
with the performance of monocular depth estimation after
phase-1 and phase-3. The results after phase-1 show that
the configuration of DAM after the last ResBlock produces
the lowest error. However, after phase-3, both positional

configurations of DAM show similar performance. Addi-
tionally, in Fig. A2, we provide the training trends of motion
field consistency loss (Lmc) for each DAM configuration:
without DAM, DAM after every ResBlock, and DAM after
the last ResBlock. We follow the training scheme of phase-2,
however, to see distinctive results, we train MotionNet from
random initialization with DepthNet pretrained from phase-1.
The results show that the configuration with DAM after the



Type Name Kernel Stride Channel I/O In. resol. Out. resol. Input

Encoder

conv 0 7×7 2 (3,3,1,1)/64 256×832 128×416 images, depth maps

maxpool 1 3×3 2 64/64 128×416 64×208 conv 0
ResBlock 1 1 – 1 64/64 64×208 64×208 maxpool 1
ResBlock 1 2 – 1 64/64 64×208 64×208 ResBlock 1 1

ResBlock 2 1 – 2 64/128 64×208 32×104 ResBlock 1 2
ResBlock 2 2 – 1 128/128 32×104 32×104 ResBlock 2 1

DAM 2 – 1 128/128 32×104 32×104 ResBlock 2 2

ResBlock 3 1 – 2 128/256 32×104 16×52 DAM 2
ResBlock 3 2 – 1 256/256 16×52 16×52 ResBlock 3 1

DAM 3 – 1 256/256 16×52 16×52 ResBlock 3 2

ResBlock 4 1 – 2 256/512 16×52 8×26 DAM 3
ResBlock 4 2 – 1 512/512 8×26 8×26 ResBlock 4 1

DAM 4 – 1 512/512 8×26 8×26 ResBlock 4 2

Ego-motion
decoder

conv 1 1×1 1 512/256 8×26 8×26 DAM 4
conv 2 3×3 1 256/256 8×26 8×26 conv 1
conv 3 3×3 1 256/256 8×26 8×26 conv 2
conv 4 1×1 1 256/6 8×26 8×26 conv 3
avgpool – – 6/6 8×26 1×1 conv 4

Res-motion
decoder

mofconv 0 1×1 1 512/3 8×26 8×26 DAM 4

concat 1 1 – – (3,512)/515 8×26 8×26 mofconv 0, DAM 4
conv 1 a 3×3 1 515/512 8×26 8×26 concat 1 1
conv 1 b 3×3 1 515/512 8×26 8×26 concat 1 1

concat 1 2 – – (512,512)/1024 8×26 8×26 conv 1 a, conv 1 b
mofconv 1 1×1 1 1024/3 8×26 8×26 concat 1 2

sum 1 – – (3,3)/3 8×26 8×26 mofconv 0, mofconv 1

upsample 2 – – 3/3 8×26 16×52 sum 1
concat 2 1 – – (3,256)/259 16×52 16×52 upsample 2, DAM 3
conv 2 a 3×3 1 259/256 16×52 16×52 concat 2 1
conv 2 b 3×3 1 259/256 16×52 16×52 concat 2 1

concat 2 2 – – (256,256)/512 16×52 16×52 conv 2 a, conv 2 b
mofconv 2 1×1 1 512/3 16×52 16×52 concat 2 2

sum 2 – – (3,3)/3 16×52 16×52 mofconv 2, upsample 2

upsample 3 – – 3/3 16×52 32×104 sum 2
concat 3 1 – – (3,128)/131 32×104 32×104 upsample 3, DAM 2
conv 3 a 3×3 1 131/128 32×104 32×104 concat 3 1
conv 3 b 3×3 1 131/128 32×104 32×104 concat 3 1

concat 3 2 – – (128,128)/256 32×104 32×104 conv 3 a, conv 3 b
mofconv 3 1×1 1 256/3 32×104 32×104 concat 3 2

sum 3 – – (3,3)/3 32×104 32×104 mofconv 3, upsample 3

upsample 4 – – 3/3 32×104 64×208 sum 3
concat 4 1 – – (3,64)/67 64×208 64×208 upsample 4, ResBlock 1 2
conv 4 a 3×3 1 67/64 64×208 64×208 concat 4 1
conv 4 b 3×3 1 67/64 64×208 64×208 concat 4 1

concat 4 2 – – (64,64)/128 64×208 64×208 conv 4 a, conv 4 b
mofconv 4 1×1 1 128/3 64×208 64×208 concat 4 2

sum 4 – – (3,3)/3 64×208 64×208 mofconv 4, upsample 4

upsample 5 – – 3/3 64×208 128×416 sum 4
concat 5 1 – – 3/67 128×416 128×416 upsample 5, conv 0
conv 5 a 3×3 1 67/64 128×416 128×416 concat 5 1
conv 5 b 3×3 1 67/64 128×416 128×416 concat 5 1

concat 5 2 – – 64/128 128×416 128×416 conv 5 a, conv 5 b
mofconv 5 1×1 1 128/3 128×416 128×416 concat 5 2

sum 5 – – (3,3)/3 128×416 128×416 mofconv 5, upsample 5

upsample 6 – – 3/3 128×416 256×832 sum 4
concat 6 1 – – (3,3,3,1,1)/11 256×832 256×832 upsample 6, images, depth maps
conv 6 a 3×3 1 11/8 256×832 256×832 concat 6 1
conv 6 b 3×3 1 11/8 256×832 256×832 concat 6 1

concat 6 2 – – (8,8)/16 256×832 256×832 conv 6 a, conv 6 b
mofconv 6 1×1 1 16/3 256×832 256×832 concat 6 2

sum 6 – – (3,3)/3 256×832 256×832 mofconv 6, upsample 6

Table A3. Details of MotionNet.



Models
phase-1 phase-3

all obj all obj
without DAM 0.126 0.202 0.113 0.190

DAM after every ResBlock 0.122 0.199 0.111 0.181
DAM after the last ResBlock 0.121 0.196 0.109 0.182

Table A4. Ablation study on different positional configurations
of DAM. We follow the same ablation scheme of Sec. 4.2. in
our main paper, and measure the AbsRel errors after phase-1 and
phase-3 on both all and obj areas. In phase-3, we regularize the
residual motion field with CSAC.
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Figure A3. Validation error trends in phase-1 depending on the
presence or absence of DAM in the motion encoder. Models
are trained and tested on the KITTI dataset, and we measure the
AbsRel errors on both all and object areas.

{α , β} D1 (fg) D2 (fg)
{50, 0.1} 34.1 41.3
{30, 0.2} 32.5 35.7
{10, 0.5} 33.8 37.2

Table A5. Ablation study of different α and β on KITTI Scene
Flow 2015 training set. We set α = 30 and β = 0.2 as our final
model of CSAC.

last ResBlock converges fastest. From these ablation studies,
we conjecture that the positional configuration of DAM has
a relation with model complexity. Since the shared motion
encoder performs two tasks, there could be a confusion from
different self-supervisory signals. DAM helps to switch the
extraction of motion feature in the encoder, however, the
convergence will become slow if this switching mechanism
is too complicated. Therefore, considering the training effi-
ciency, we have chosen the configuration of DAM after the
last ResBlock. Finally, we analyse the convergence trends of
the networks in phase-1 with and without DAM in Fig. A3 –
applied on the objects only and on the entire image. We can
notice a marginal improvement of the depth quality when
DAM is employed. It underlines that during this training
phase the motion encoder design only has little influence
on the depth estimation. However, as underlined by other
tests, DAM provides significant improvements on the overall
system after the entire training process.
Different α and β for inlier score In Fig. A4, we visual-
ize different mapping of the soft inlier score function Finlier
according to α and β to analyze their impacts. The graph
shows that a high α value makes the curve sharp, and this
leads to increase the discretization of the inlier scores. In Ta-
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Figure A4. Different inlier score mapping with α and β . The
steeper the curve, the more discretized, so we conduct ablations to
find appropriate values.
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Figure A5. Reparameterized gradient maps e−∇D/τ depending
on different τ . We visualize image, its depth map, and gradients
over the x and y axis. Smaller value of τ reduces gradients on the
edges.

τ = 1.0 τ = 0.5 τ = 0.1 τ = 0.05
Cityscapes-VIS 0.683 0.689 0.712 0.704

Table A6. Motion segmentation results (mean IoU) with differ-
ent τ . This table is related (dataset and training scheme) to Table 5
of our main paper.

ble A5, we conduct an ablation study to find the appropriate
values of α and β . From the results, we conclude that both
high discretization and tolerant mapping have adverse ef-
fects on residual motion learning. As a result of this ablation
study, we selected α = 30 and β = 0.2 for CSAC.
Reparameterized edge-aware motion smoothness We vi-
sualize the reparameterized gradients maps according to dif-
ferent τ in Fig. A5. The vanilla edge-aware smoothness term
(τ = 1.0) is not distinctive enough to leverage the boundary
prior of objects. By reparameterizing with a small value
of τ , we conjecture that the motion segmentation near the
boundary of objects would be improved. We show motion
segmentation results on different τ in Table A6.
Configuration of loss weights We summarize the learning



Phase λp λg λs λh λmr λms λmp λmc

phase-1 1.0 1.0 0.1 0.2 – – – –
phase-2 1.0 1.0 0.1 0.2 – 1.0 0.5 0.001
phase-3 1.0 1.0 0.1 0.2 0.2 1.0 1.0 0.001

Table A7. Summarization of loss weights for each phase.

λmr
λms

0.1 0.2 0.3

0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0
all 0.123 0.119 0.116 0.116 0.113 0.113 0.119 0.123 0.128
obj 0.212 0.205 0.194 0.196 0.190 0.188 0.206 0.217 0.224

Table A8. Ablation study of different loss weights, λmr and λms,
on the KITTI dataset. We measure the AbsRel errors on both all
and obj areas.

parameters for each dataset in Table A7. The photometric
loss, Lp, is defined as follows:

Lp = ∑
(
γ1
∣∣I− Î

∣∣
1 + γ2(1−SSIM(I, Î))

)
, (A1)

where SSIM is the structural similarity loss [5], and {γ1,
γ2} is set to {0.3, 1.5} based on cross-validation. Other
parameters of our loss functions are the same as previous
works as described in Sec. 3.4. of our main paper.
Different loss weights of λmr and λms To justify the
parametrization of the hyper-parameters λmr and λms, we
propose another ablation study conducted on the KITTI
dataset. For this experiment, we follow the training scheme
and dataset described in Sec. 4.2. of our main paper. As
provided in Table A8, our motion regularization with CSAC
shows stable training with λmr = 0.2 and λms = 1.0.

C. Additional Experimental Results
In this section, we present additional experimental results

as an extension of Sec. 4. of our main paper.
Full table of monocular depth estimation We provide the
full results of our models for the task of monocular depth
estimation in Table A9. The results consistently show that
our proposed modules, DAM and CSAC, favorably work
on three different dataset: KITTI, Cityscapes, and Waymo
Open Dataset.
Qualitative results In addition to Fig. 7 in our main pa-
per, we visualize the depth map and residual motion field
in Fig. A6 and Fig. A7. Fig. A8 shows two representa-
tive effects of the regularization through CSAC: sharpen
boundaries of object’s motion, and motion hole filling in
the homogeneous areas. Our module consistently preserves
the shape of the moving objects, while the baseline model
distorts the appearance of objects.
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Method Phase Training Test Error metric ↓ Accuracy metric ↑
AbsRel SqRel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline phase-1 K K 0.126 0.975 5.244 0.211 0.849 0.946 0.979
Ours (DAM) phase-1 K K 0.123 0.920 5.212 0.205 0.854 0.945 0.978
Ours (DAM) phase-3 K K 0.120 0.895 4.972 0.196 0.859 0.950 0.980
Ours (DAM+CSAC) phase-3 K K 0.114 0.876 4.715 0.191 0.872 0.955 0.981
Baseline phase-1 C+K K 0.122 0.907 4.985 0.207 0.862 0.953 0.980
Ours (DAM) phase-1 C+K K 0.119 0.883 5.021 0.206 0.861 0.954 0.979
Ours (DAM) phase-3 C+K K 0.116 0.845 4.790 0.194 0.868 0.957 0.979
Ours (DAM+CSAC) phase-3 C+K K 0.111 0.805 4.708 0.187 0.875 0.962 0.981
Baseline phase-1 C C 0.128 1.322 6.942 0.198 0.833 0.949 0.978
Ours (DAM) phase-1 C C 0.127 1.330 6.903 0.196 0.838 0.950 0.979
Ours (DAM) phase-3 C C 0.124 1.281 6.818 0.189 0.849 0.951 0.981
Ours (DAM+CSAC) phase-3 C C 0.116 1.213 6.695 0.186 0.852 0.951 0.982
Baseline phase-1 W W 0.161 1.724 7.825 0.217 – – –
Ours (DAM) phase-1 W W 0.159 1.707 7.816 0.215 – – –
Ours (DAM) phase-3 W W 0.155 1.692 7.448 0.212 – – –
Ours (DAM+CSAC) phase-3 W W 0.148 1.686 7.420 0.210 – – –

Table A9. Full results of our models for monocular depth estimation on KITTI (K) Eigen test set, Cityscapes (C) test set, and Waymo
Open Dataset (W). The models pretrained on Cityscapes and fine-tuned on KITTI are denoted by ‘C+K’. For each partition, Bold: Best.

(a) target image (b) depth map (c) residual motion field

(d) object box image and its inliers

Cityscapes

KITTI

*Motion by reverse-ordered input

Figure A6. Qualitative results of depth and residual motion estimation in KITTI and Cityscapes. The residual motion field is mapped
into the HSV color space.



Forward
residual motion

(b) Baseline (c) +DAM (d) +DAM+CSAC(a) Input image

Depth map

(e)

Backward
residual motion

(f) Pedestrian

Figure A7. Qualitative results of depth map and bidirectional residual motion field in Waymo Open Dataset. AbsRel errors on all /
obj: (b) 0.154 / 0.328, (c) 0.149 / 0.250 (improved distinction between obj and background), (d) 0.135 / 0.164 (sharpen object boundary). (e)
Result of a diverged depth map, if auto-masking proposed by MonoDepth2 [2] fails. (f) Results of residual motion field for pedestrians.

Without CSAC after 1k iter. after 10k iter.

Figure A8. Qualitative results of motion inliers in Cityscapes. CSAC makes the motion boundaries more clear and sharper as shown in
the first row, and the motion holes in homogeneous regions more consistent on the rigid objects as demonstrated in the second row.


