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1. Network Architecture
LFI-CAM is composed of the attention branch and per-

ception branch and both branches are connected by the
attention mechanism. Conventional baseline models such
as ResNet [1], DenseNet [3], ResNeXt [4] and SENet [2]
or the customized classifier can be used as the percep-
tion branch. The Feature Importance Network(FIN) con-
tains multiple convolution layers for extracting feature im-
portance of the feature map. The architecture details of FIN
are shown in Table 1. Notations are as follows: h and w:
height and width of the input image, N: the number of out-
put channels, K: kernel size, S: stride size, P: padding size,
BN: batch normalization.

2. Additional Experimental Results
2.1. Visual Explanation Results

In addition to the results presented in the paper, we
show supplementary visual explanation results of ABN and
LFI-CAM for CIFAR100, STL10 and ImageNet in Figs. 2,
Figs. 3 and Figs. 4

2.2. Visualization of the Feature Importance Net-
work Effectiveness

To evaluate effectiveness of the proposed Feature Im-
portance Network, we visualize the pixel-wise mean fea-
ture map from the last convolutional layer of the LFI-CAM
model trained without and with the FIN. Then we compare
them against the CAM generated from LFI-CAM model
trained with FIN. Fig. 1 shows the additional visual expla-
nation results for FIN effectiveness. After the FIN’s feature
importance is incorporated, our LLFI−CAM successfully
focuses on the most distinguishable region of the target ob-
ject. For example, as shown in the first and third row, the
attention focuses more on the desk area after applying FIN
because LFI-CAM classifies the input image as ‘desk’.

* indicates equal contribution.
** indicates corresponding author.

Figure 1. Visualization of the Feature Importance Network Effec-
tiveness. (a) Input image, (b) Pixel-wise mean feature map from
the last convolutional layer of LFI-CAM trained without FIN, (c)
Pixel-wise mean feature map from the last convolutional layer of
LFI-CAM trained with FIN, (d) CAM generated from LFI-CAM.

2.3. Stability Evaluation on Visual Explanation for
ABN and LFI-CAM

We have observed that ABN outputs unreliable and in-
consistent attention maps through several experiments. We
trained several ABN models with various hyper-parameters
on the Cat&Dog and STL10, and then compared CAMs of
the same image from several models with similar accuracy.
Fig. 5 and Fig. 6 show the additional stability test results
on visual explanation for the STL10 and Cat&Dog. CAM
results for the exactly same test images are unreliable and
inconsistent although the trained ABN models have similar



accuracy. On the other hand, the results of LFI-CAM can be
confirmed to be reliable and stable.
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Table 1. Architecture of Feature Importance Network (FIN).
Part Input → Output Shape Layer Information

CONV Layer ( h
16 , w

16 ,2048) → ( h
16 , w

16 , 2048) CONV-(N2048, K3, S0, P1), BN, ReLU
( h
16 , w

16 ,2048) → ( h
16 , w

16 , 2048) CONV-(N2048, K3, S0, P1), BN, ReLU
( h
16 , w

16 ,2048) → ( h
16 , w

16 , 2048) CONV-(N2048, K3, S0, P1), BN, ReLU
( h
16 , w

16 ,2048) → ( h
16 , w

16 , 2048) CONV-(N2048, K3, S0, P1), BN, ReLU
Output Layer ( h

16 , w
16 , 2048) → (2048) Global Average Pooling & SoftMax

Figure 2. Visual Explanation Results of ABN and LFI-CAM for CIFAR100

Figure 3. Visual Explanation Results of ABN and LFI-CAM for STL10

Figure 4. Visual Explanation Results of ABN and LFI-CAM for ImageNet



Figure 5. Examples of stability test on visual explanation. Each row displays CAM results of ABN or LFI-CAM models that were trained
with various (5) hyper-parameters on the STL10 dataset.



Figure 6. Examples of stability test on visual explanation. Each row displays CAM results of ABN or LFI-CAM models that were trained
with various (5) hyper-parameters on the Cat&Dog dataset.


