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A. Regarding Point-level Supervision
In this paper, we tackle temporal action localization un-

der point-level supervision. Here, timestamp are denoted by
“points” in the temporal axis, whereas “points” have also
been widely used to represent spatial pixels in the literature.
Bearman et al. [1] introduce the first weakly-supervised se-
mantic segmentation framework that takes as supervision
a single annotated pixel for each object. Since that work,
a great amount of efforts [4, 5, 6, 14, 15] have been en-
deavored to utilize point-level supervision to solve vari-
ous segmentation tasks in images or videos, thanks to its
affordable annotation cost. Meanwhile, there are also at-
tempts to employ point-level supervision to train object de-
tectors [9, 12, 13]. On the other hand, spatial points have
also been explored to provide supervision for the weakly-
supervised spatio-temporal action localization task [10, 11].

We remark that the definition of “point” in our problem
setting is based on the temporal dimension, differing from
that of the work above.

B. Greedy Optimal Sequence Search
As discussed in the main paper, the search space of op-

timal sequence selection would grow exponentially as the
length of the input video increases, which makes the opti-
mal sequence search intractable. To bypass the cost issue,
we design a greedy algorithm that makes locally optimal
choices at each step under a fixed budget. Specifically, we
process an input video in a sequential way, taking one seg-
ment at a timestep. At each timestep t, we consider all pos-
sible t-length candidate sequences consistent with point la-
bels, and compute their completeness scores by averaging
contrast scores of the action and background instances con-
stituting the sequences (Eq. (6) of the main paper). In this
calculation, we do not include the ongoing (i.e., not termi-
nated) instance, as it is infeasible to derive its contrast score
without looking ahead to the future. Afterwards, we keep
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α −→ 1 5 10 25 50 100

mAP@AVG (%) 51.3 52.5 52.6 52.8 52.7 52.7
Execution time (sec) 0.683 1.343 2.151 4.398 8.512 16.769

Table 1: Analysis on the budget size α on THUMOS’14. We
provide the execution times as well as the average mAPs un-
der IoU thresholds 0.1:0.1:0.7 with varying α from 1 to 100.
The average execution time for optimal sequence selection
per epoch is reported in seconds.

only the top α (budget size) candidates regarding the com-
pleteness scores. When the step t reaches the end of the
video, we terminate the algorithm and select the optimal se-
quence with the highest score. In this way, we can save a
large amount of the computational cost, thereby making the
search process tractable. The pseudo-code of our algorithm
for class c is described in Algorithm 1.

Since the budget α affects the computational cost as well
as the performance, we investigate several different budget
sizes on THUMOS’14. For the computational cost, we train
the model for 100 epochs and report the average execution
time of optimal sequence selection for an epoch (i.e., 200
training videos). The selection is implemented in multipro-
cessing with 16 worker processes and performed on a single
AMD-3960X Threadripper CPU. Table 1 shows the average
mAPs (%) and the execution times (sec) with varying α. As
can be expected, when the budget increases, the computa-
tional cost grows in a nearly linear way. Besides, when α
is set to a too-small value (e.g., 1), the selected optimal se-
quence is likely to be a local optimum, leading to a signifi-
cant performance drop. On the other hand, the performance
differences are insignificant when α is larger than 5. This in-
dicates that the model is fairly robust against the budget size
and a not-too-small α is sufficient to find the sequences that
can provide helpful completeness guidance to the model. In
practice, we set α to 25, as it achieves the best performance
at an affordable cost of fewer than 5 seconds for processing
the whole training videos.



Algorithm 1 Greedy Optimal Sequence Search

Input: class-specific action points (ascending) Bact
c = {tact

i }
M act

c
i=1 , pseudo background points (ascending) Bbkg = {tbkg

j }M
bkg

j=1 ,
the number of class-specific action points M act

c , the number of pseudo background points M bkg,
fixed budget size α

Output: optimal sequence π∗
c

// Definition: πc = {(sn, en, zn)}Nn=1,Sc = {(πc,R(πc))} (refer to Sec. 3.2 of the main paper for the definition of πc andR(πc))
// Initialize the first instance (s1 = e1 = 1) with the same category as that of the first point label

1: if tact
1 > tbkg

1 , then π0
c ← {(1, 1, 0)} else π0

c ← {(1, 1, 1)}
2: Sc ← {(π0

c ,∞)}
3: i← 1; j ← 1

// For each step t, find the top α sequences which span from the first segment to the t-th segment while agreeing with point labels.
4: for t = 2 to T do
5: // Find the upcoming points for action and background, respectively.
6: if t > tact

i , then i← min (i+ 1,M act
c ); if t > tbkg

j , then j ← min (j + 1,M bkg)
// Remember the category of the closest upcoming point, as it will determine the possible cases (to continue or to be terminated)

7: if tact
i > tbkg

j , then zupcoming ← 0 else zupcoming ← 1
// If t surpasses either of the last points for action and background, reverse the upcoming category

8: if t > min (tact
i , t

bkg
j ), then zupcoming ← 1− zupcoming

// Update the candidate sequence set for the timestep t
9: Snext

c ← ∅
10: while Sc 6= ∅ do
11: pop

(
πc = {(sn, en, zn)}Nn=1,Rcurrent

)
from Sc

12: pop the last instance (sN , eN , zN ) from πc // eN should be equal to t− 1
// The case where the last instance continues at timestep t

13: if zN = zupcoming or t 6∈
(
Bact
c ∪ Bbkg

)
then

14: πnew
c ← πc ∪ {(sN , eN + 1, zN )}

15: Snext
c ← Snext

c ∪ {
(
πnew
c ,Rcurrent

)
}

16: end if
// The case where the last instance is terminated at timestep t− 1 and a new instance starts at timestep t

17: if zN 6= zupcoming then
18: πlast

c ← {(sN , eN , zN )}
// Update the score of the candidate sequence by averaging the contrast scores again

19: if N = 1, thenRnew ← R(πlast
c ) elseRnew ←

(
R(πlast

c ) + (N − 1)Rcurrent
)
/N

// Create a new instance that starts right after the last instance, with the category of zupcoming

20: πnew
c ← πc ∪ πlast

c ∪ {(eN + 1, eN + 1, zupcoming)}
21: Snext

c ← Snext
c ∪ {

(
πnew
c ,Rnew

)
}

22: end if
23: end while
24: Sc ← Snext

c
// Pruning with the budget size α

25: while |Sc| > α do
26: πmin

c ← argminπc
Rcurrent for

(
πc,Rcurrent

)
∈ Sc

27: pop
(
πmin
c ,Rcurrent

)
from Sc

28: end while
29: end for

// Return the optimal sequence
30: π∗

c ← argmaxπc
R(πc) for πc ∈ Sc

31: return π∗
c
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Figure 1: Correlation between scores and IoUs with ground-
truths. (a) The inner score shows moderate correlation
(Pearson’s r = 0.38), whereas (b) the score contrast displays
much stronger correlation (Pearson’s r = 0.68).

Mining approach mAP@IoU (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

Global mining [8] 67.4 61.1 54.9 46.3 36.4 25.7 13.4 43.6
Ours w/o filling 70.1 64.4 57.6 49.5 39.4 29.5 15.5 46.6

Ours 70.7 65.2 58.1 49.8 40.7 30.2 16.1 47.3

Table 2: Comparison of different pseudo background min-
ing approaches on THUMOS’14. AVG represents the aver-
age mAP at the IoU thresholds 0.1:0.1:0.7.

C. Additional Experiments

C.1. Score contrast vs. completeness

To analyze the correlation between score contrast and ac-
tion completeness, we draw the scatter plot of score con-
trast vs. IoUs with ground-truth action instances, using the
randomly sampled 2,000 temporal intervals in the THU-
MOS’14 training videos. For reference, we also present the
scatter plot of inner action scores vs. IoUs with the same
intervals. In the experiments, we use the baseline model for
fair comparison. Fig. 1a demonstrates that there is a mod-
erate correlation between inner action scores and IoUs, but
there are many cases with large inner scores but low IoUs
(see bottom right). On the contrary, as shown in Fig. 1b,
score contrast correlates much stronger with IoUs, demon-
strating its efficacy as a proxy for measuring the action com-
pleteness without any supervision.

C.2. Analysis on Pseudo Background Mining

We compare different variants of pseudo background
mining on THUMOS’14. Specifically, we consider three
variants: (1) “Global mining” selects the top ηM act points
throughout the whole video without considering their loca-
tions as in SF-Net [8], where M act is the number of action
instances and η is set to 5, (2) “Ours w/o filling” follows
the principle described in Sec. 3.1 except the filling stage,
i.e., we select at least one background point for each section
between two action points, and (3) “Ours” mines all points
between the background points for each section if multi-
ple points are found in the second variant. Note that we use

the baseline model without completeness learning for clear
comparison.

The results are demonstrated in Table 2. It can be ob-
served that both of our methods significantly outperform the
“Global mining” approach, which verifies the effectiveness
of our selection principle that at least one background point
should be placed for each section. Moreover, by ensuring
at least one background point for each section, the search
space of optimal sequence selection can be significantly re-
duced, although we do not include the cost analysis for this
experiment. Meanwhile, we notice that filling between two
background points slightly boosts the localization perfor-
mance. This is presumably because hard background points
with low scores can be collected in the filling step.

C.3. Optimal Sequence Visualization

In Fig. 2, we visualize the obtained optimal sequences
for the examples from the three benchmarks. In the first ex-
ample from THUMOS’14 (a), the optimal sequence cov-
ers the ground-truth action instances well so that the model
could learn action completeness from it. Moreover, al-
though the examples from GTEA (b) and BEOID (c) con-
tain a variety of action classes in a single video, our method
successfully finds the optimal sequence that shows large
overlaps with the ground-truth ones. Overall, it is shown
from all the examples that the optimal sequences are quite
accurate even though they are selected based on point-level
labels without full supervision. They in turn provide com-
pleteness guidance to our model, which proves to improve
localization performances at high IoU thresholds in Sec. 4.3
of the main paper.

C.4. More Qualitative Comparison

We qualitatively compare our method with SF-Net [8] on
the three benchmarks. The comparison on THUMOS’14 [3]
is demonstrated in Fig. 3. As shown, SF-Net produces frag-
mentary predictions by splitting action instances, whereas
our method outputs complete ones with high IoUs even
for the extremely long action instance (b). The compari-
son result on GTEA [7] is presented in Fig. 4. It would be
noted that action localization on GTEA is challenging as
the frames with different action categories are visually sim-
ilar, leading to false positives. We see that SF-Net has dif-
ficulty in distinguishing action instances from background
ones, resulting in inaccurate localization. On the other hand,
our method successfully finds the action instances by learn-
ing completeness, showing fewer false positives. Lastly, the
comparison on BEOID [2] is shown in Fig. 5. It can be
clearly noticed that SF-Net fails to predict the ending times
of action instances, leading to the overestimation problem.
On the contrary, with the help of the completeness guidance,
our method better separates actions from their surroundings
and locates the action instances more precisely.
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(c) An example from BEOID (02_Desk1)

Figure 2: Optimal sequence visualization on the three benchmarks. The examples are taken from (a) THUMOS’14, (b) GTEA,
and (c) BEOID, respectively. Note that all of the examples belong to the training set of the corresponding benchmarks. For
each video, we present the final scores and the obtained optimal sequences as well as ground-truth action intervals. The
horizontal axis in each plot denotes the timesteps of the video, while the vertical axis in the first plot indicates the score
values ranging from 0 to 1. For each example, different colors correspond to different action categories, while the gray color
indicates the background class.



Comparison – THUMOS (supp)
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(a) An example of Diving action (video_test_0001309)
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(b) An example of CleanAndJerk action (video_test_000058)

Figure 3: Qualitative comparison with SF-Net [8] on THUMOS’14. We provide two examples with different action classes:
(a) Diving and (b) CleanAndJerk. For each video, we present the final scores and detection results from SF-Net and our model
as well as ground-truth action intervals. The horizontal axes denote the timesteps of the video, while the vertical axes are the
score values ranging from 0 to 1. The detection threshold is set to 0.2 for our method and set to the mean score for SF-Net
following the original paper. The red boxes indicate the frames that are misclassified by SF-Net but detected by our method.
All of our detection results show high IoUs (> 0.5) with the corresponding ground-truths regardless of their lengths.



Comparison – GTEA (supp)
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(a) An example of Take action (S4_Pealate_C1)
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(b) An example of Pour action (S4_Cheese_C1)

Figure 4: Qualitative comparison with SF-Net [8] on GTEA. We provide two examples with different action classes: (a)
Take and (b) Pour. For each video, we present the final scores and detection results from SF-Net and our model as well as
ground-truth action intervals. The horizontal axis in each plot denotes the timesteps of the video, while the vertical axes are
the score values ranging from 0 to 1. The detection threshold is set to 0.2 for our method and set to the mean score for SF-Net
following the original paper. The red boxes indicate false alarms of SF-Net, but they, however, are rejected by our method.
Compared to SF-Net, our method localizes action instances more precisely with fewer false positives.



Comparison – BEOID (supp)
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(a) An example of Scan_Card-reader action (01_Door1)
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(b) An example of Turn_Tap action (02_Sink2)

Figure 5: Qualitative comparison with SF-Net [8] on BEOID. We provide two examples with different action classes: (a)
Scan Card-reader and (b) Turn Tap. For each video, we present the final scores and detection results from SF-Net and our
model as well as ground-truth action intervals. The horizontal axis in each plot denotes the timesteps of the video, while the
vertical axes are the score values ranging from 0 to 1. The detection threshold is set to 0.2 for our method and set to the mean
score for SF-Net following the original paper. The red boxes indicate false alarms of SF-Net deteriorating the performances
at high IoU thresholds. While SF-Net overestimates the action instances, our method detects the complete action instances
by discriminating action instances from background ones well.
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