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1. Network Architecture
We test two encoder backbones of MobileNet.v2 [9] and PNASNet [6]. Each network, excluding the last estimation layer,

is used as the encoder. Table S-1 summarizes the sizes of input RGB images and encoder output features.

Table S-1. The sizes of input RGB images and encoder output features in experiments.
NYUv2 Taskonomy

MobileNet.v2 PNASNet

Input image 384× 288× 3 384× 288× 3 256× 256× 3

Encoder output 12× 9× 4320 12× 9× 4320 12× 9× 4320

The decoders are used to expand low-resolution features to higher-resolution estimates. Each decoder consists of 12
convolutional layers of 3 × 3 kernels, ReLU activations, and 5 bilinear up-sample operations, as shown in Figure S-1. The
number co of output channels is determined differently for each task, as listed in Table S-2. For example, for the full-sharing
network for NYUv2, co is set to 17 to perform the three tasks (i.e., depth, normal, and segmentation) simultaneously.

Table S-2. The number of output channels for each task.
Depth Normal Segmentation Curvature Reshading 2D edge 3D edge 2D keypoint 3D keypoint

co 1 3 13 2 1 1 1 1 1

𝑐o

3 × 3 conv layer

4320 1024 512 512 256 256 128 128 64 64 32 32

Bilinear up-sampleReLU activation

Figure S-1. The decoder network. Each number indicates the number of channels.

In the full-sharing and multi-decoder architectures, encoder representations are transferred directly to decoders. In the
multi-column architecture, different representations from different encoders are linearly combined using the cross-stitch unit.
Specifically, let xo

k and xi
k denote the output from the kth encoder and the input to the kth decoder, respectively. Then, for

triple-task learning, the relation between xo
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k is given byxi
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where each αij is a learnable parameter. In other words, learning n tasks requires an n×n relation matrix. For the three-task
learning of the NYUv2 dataset, αij is initialized to 0.9 if i = j, and to 0.05 otherwise. Also, on the Taskonomy dataset, every
αij is initialized equally; αij =

1
4 for the 4-task learning and αij =

1
8 for the 8-task learning.



2. Loss Functions
We adopt a loss function for each task. Each loss function contains one or two regularizers to constrain the range of

estimation results.

• The depth loss ℓD is defined as the L1-norm between the logarithms of a ground-truth depth map D and its estimate
D̂ with regularizers rmin

D and rmax
D ,

ℓD = 1
wh ∥ log(D̂)− log(D)∥1 + rmin

D + rmax
D . (2)

For a dataset with depth range [dmin, dmax], the regularizers rmin
D and rmax

D are defined as

rmin
D = 1

wh ∥min(D̂, dmin1)− dmin1∥1 (3)

rmax
D = 1

wh ∥max(D̂, dmax1)− dmax1∥1 (4)

where 1 is the constant map, every pixel of which has value 1.

• The normal loss ℓN is obtained by calculating the inner products between normal vectors of a ground-truth normal map
N and its estimate N̂,

ℓN = 1− 1
wh

∑w
x=1

∑h
y=1 n

T
xyn̂xy + rN (5)

where nxy and n̂xy are the normal vectors of pixel (x, y) in N and N̂, respectively. Note that ∥nxy∥ = 1 for every
(x, y). Thus, the regularizer rN encourages each n̂xy also to be a unit vector, which is given by

rN = 1
wh

∑w
x=1

∑h
y=1

∣∣∥n̂xy∥ − 1
∣∣. (6)

• The segmentation loss ℓS is the average cross-entropy between one-hot vectors in a ground-truth map S and probability
vectors in an estimated map Ŝ, which are obtained by computing the softmax function on an output feature map F̂ of
a decoder network. It is given by

ℓS = − 1
wh

∑w
x=1

∑h
y=1 s

T
xy log ŝxy + rS (7)

where sxy and ŝxy are the one-hot and probability vectors of pixel (x, y). To constrain the range of F̂, the regularizer
rS is defined as

rS = 1
wh

∑w
x=1

∑h
y=1

∑nc

c=1

(
max

(
|̂fxy(c)|, fmax

)
− fmax

)
(8)

where nc is the number of semantic segmentation classes (e.g., 13 for the NYUv2 dataset) and fmax is set to 10. Also,
f̂xy is the feature vector of pixel (x, y) in F̂.

• The remaining 6 losses for curvature ℓC, reshading ℓR, 2D edge ℓE2, 3D edge ℓE3, 2D keypoint ℓK2, and 3D keypoint
ℓE3 are the norms between ground-truth maps and their estimates. For example, the curvature loss ℓC is defined as

ℓC = 1
wh ∥Ĉ−C∥+ rC (9)

where rC enforces the estimate to have a similar standard deviation to the ground-truth, which is given by

rC = |σ(Ĉ)− σ(C)|. (10)

The other five losses ℓR, ℓE2, ℓE3, ℓK2, and ℓK3 are defined in the same way as (9) and (10).

Evaluation protocol for Taskonomy [10]: From the tiny split of Taskonomy, we build a mini dataset of 2,762 training
images and 548 test images with a sampling ratio of 1

100 . In the evaluation, we compute losses, which are defined above in
(2)∼(10), but exclude regularizer values. For example, to compute depth errors in Table 5 in the main paper, we compute
1
wh ∥ log(D̂)− log(D)∥1. For easier comparison of errors in different orders of magnitude in Table 5, values are multiplied
by 10 for 2D edge errors, and multiplied by 100 for 3D edge and 2D keypoint errors.



3. Training Details
During training, we perform the horizontal flip data augmentation in an online manner. For the NYUv2 dataset, we fill in

missing values in depth maps and normal maps using the colorization algorithm in [5]. We initialize the encoder parameters
to those pre-trained with ImageNet [2] and the decoder parameters using the Xavier [3] method. As a solver, we adopt the
AdamW algorithm [8] and set its learning rate, weight decay, β1, β2, and ϵ to 10−4, 0.01, 0.9, 0.999, and 10−8, respectively.
In all experiments, one period is set to one epoch. For the NYUv2 dataset with the MobileNet.v2 backbone, the network for
each configuration is trained for 1,000 epochs. In the default mode, the increasing rate of the hyper-parameter β is set to 0.02
per epoch. For the NYUv2 dataset with the PNASNet backbone, the network is trained for 50 epochs, and the increasing rate
of β is 0.05 per epoch. For the Taskonomy dataset, the network is trained for 200 epochs, and the increasing rate of β is 0.5
per epoch.

In MTL, the performances of different tasks are in a trade-off. Initial weights, hence, affect the final performances.
For a fair comparison, each algorithm is initialized in the same way using equal weighting, i.e. the weight vector is set to
(wD, wN, wS) =

(
1
3 ,

1
3 ,

1
3

)
. In the proposed algorithm, this is achieved by setting the priority factors in Eq. (4) in the main

paper to (πD, πN, πS) =
(
1
3 ,

1
3 ,

1
3

)
. For Uncert, it is done by setting its parameter σ. Since DWA and GradNorm initialize

the weights of all losses equally, it is the same as the equal weighting scheme. In contrast, GLS formulates the overall loss as
the geometric mean of individual losses, instead of the weighted sum in Eq. (2) in the main paper. Thus, we test GLS as it is.



4. Repeated Tests for Reliable Comparison
To compare the algorithms more reliably, we repeat the same experiments 5 times for the multi-column architecture in

Table 2 in the main paper and summarize the results below in Table S-3. Due to the randomness in training, each experimental
trial yields a different result. However, in general, the proposed algorithm achieves the best MTL results. Note that, for each
metric, there are 25 trials. Out of those 25 trials, the top 20% trials are mostly performed by the proposed algorithm. Also,
the average rank over the five trials of the proposed algorithm is 6.82, which is significantly better than the second-best one
(= 11.62) of the Uncert.

The last five rows in Table S-3 summarize the average performances over the five trials of each algorithm. The proposed
algorithm achieves best results in all metrics with no exception. Thus, it has the best average rank (= 1.08), which is
significantly better than the second-best one (= 2.58) of Uncert.

Table S-3. Performance comparison of the proposed algorithm with the conventional algorithms on the NYUv2 dataset using the multi-
column architecture with the MobileNet.v2 backbone. Each algorithm is tested 5 times. The rank performance is provided within paren-
theses. The best average rank is boldfaced. Also, the results of top 20% trials for each metric are in red. The last five rows summarize the
average performances over the five trials of each algorithm.

Depth Normal Segmentation Rank

δ1 RMSE δ30◦ ∠mean mIoU Acc. Min Max Avg.

Equal weighting

59.5% (21.5) 0.801 (24.5) 44.3% (15.5) 40.0 (12.5) 19.9% (20) 55.7% (18) 12.5 24.5 18.67

16.88
59.7% (18.5) 0.793 (17) 43.6% (24) 40.3 (21) 20.2% (17) 55.5% (23.5) 17 24 20.08
60.3% (8) 0.790 (12) 45.1% (4.5) 38.9 (2) 19.7% (22.5) 55.5% (23.5) 2 23.5 12.08
59.4% (23.5) 0.799 (22.5) 44.3% (15.5) 40.0 (12.5) 20.0% (19) 56.2% (9.5) 9.5 23.5 17.08
59.3% (25) 0.796 (20) 43.9% (20) 40.1 (16) 20.8% (7) 56.1% (11) 7 25 16.50

Uncert [4]

60.9% (3.5) 0.775 (2) 44.1% (18) 40.1 (16) 20.8% (7) 56.3% (7.5) 2 18 9.00

11.62
60.1% (10) 0.792 (14) 43.9% (20) 40.5 (23) 20.4% (15) 55.9% (13.5) 10 23 15.92
59.4% (23.5) 0.789 (11) 45.3% (2) 38.8 (1) 20.8% (7) 55.6% (21) 1 23.5 10.92
59.8% (15.5) 0.788 (9.5) 44.3% (15.5) 40.0 (12.5) 20.5% (12.5) 55.9% (13.5) 9.5 15.5 13.17
59.8% (15.5) 0.798 (21) 45.2% (3) 39.1 (3) 20.8% (7) 56.5% (5) 3 21 9.08

DWA [7]

59.9% (13.5) 0.792 (14) 43.7% (23) 40.2 (19) 20.5% (12.5) 56.2% (9.5) 9.5 23 15.25

16.12
59.6% (20) 0.794 (19) 43.8% (22) 40.5 (23) 20.2% (17) 55.8% (16) 16 23 19.50
59.7% (18) 0.801 (24.5) 43.9% (20) 40.2 (19) 19.8% (21) 55.7% (18) 18 24.5 20.08
59.9% (13.5) 0.799 (22.5) 43.3% (25) 40.8 (25) 20.8% (7) 56.3% (7.5) 7 25 16.75
60.1% (10) 0.783 (8) 44.6% (11) 39.8 (9.5) 20.5% (12.5) 56.6% (3) 3 12.5 9.00

GLS [1]

60.6% (7) 0.778 (4.5) 44.3% (15.5) 40.5 (23) 19.6% (24.5) 55.9% (13.5) 4.5 24.5 14.67

13.57
60.7% (6) 0.782 (6.5) 44.6% (11) 40.1 (16) 19.6% (24.5) 55.6% (21) 6 24.5 14.17
59.7% (18) 0.793 (17) 44.6% (11) 40.0 (12.5) 19.7% (22.5) 55.6% (21) 11 22.5 17.00
60.9% (3.5) 0.782 (6.5) 44.9% (8) 39.8 (9.5) 20.2% (17) 55.7% (18) 3.5 18 10.42
60.0% (12) 0.788 (9.5) 45.0% (6.5) 39.3 (4) 20.5% (12.5) 55.1% (25) 4 25 11.58

Proposed

61.6% (1) 0.772 (1) 44.8% (9) 39.5 (6) 21.0% (3.5) 56.5% (5) 1 9 4.25

6.82
60.1% (10) 0.792 (14) 44.5% (13) 40.2 (19) 21.0% (3.5) 56.5% (5) 3.5 19 10.75
59.5% (21.5) 0.793 (17) 45.1% (4.5) 39.4 (5) 20.6% (10) 55.9% (13.5) 4.5 21.5 11.92
61.1% (2) 0.778 (4.5) 45.0% (6.5) 39.7 (8) 21.4% (1.5) 56.8% (2) 1.5 8 4.08
60.8% (5) 0.776 (3) 45.4% (1) 39.6 (7) 21.4% (1.5) 57.0% (1) 1 7 3.08

Average performance of five trials for each algorithm

Equal weighting 59.6% (5) 0.796 (5) 44.2% (4) 39.9 (3) 20.1% (4) 55.8% (4) 3 5 4.17
Uncert [4] 60.0% (3) 0.788 (3) 43.6% (3) 39.7 (1.5) 20.7% (2) 56.0% (3) 1.5 3 2.58
DWA [7] 59.8% (4) 0.794 (4) 43.9% (5) 40.3 (5) 20.4% (3) 56.1% (2) 2 5 3.83
GLS [1] 60.4% (2) 0.785 (2) 44.7% (2) 39.9 (4) 19.9% (5) 55.6% (5) 2 5 3.33
Proposed 60.6% (1) 0.782 (1) 45.0% (1) 39.7 (1.5) 21.1% (1) 56.5% (1) 1 1.5 1.08



5. Loss Scale Trends
We compare weight and loss scale trends in Figure S-2, Figure S-3, and Figure S-4. Note that a similar experiment is

done in Figure 9 in the main paper. Here, the results on different combinations of encoder backbone and dataset are reported.
Figure S-2 shows the comparison results using the MobileNet.v2 backbone on the NYUv2 dataset. In equal weighting and
DWA, the segmentation loss is dominant throughout the training. In Uncert, each loss scale converges gradually to a similar
level as the training progresses. However, it converges only after many training epochs. On the other hand, the proposed
algorithm equalizes the loss scales much faster by adjusting the weights effectively.

Figure S-3 and Figure S-4 compare weight and loss scale trends of the 4-task learning and 8-task learning on the Taskon-
omy dataset, respectively. Since equal weighting and GLS [1] are trained with fixed weights, the corresponding weight graphs
are omitted. Similar trends to Figure S-2 are observed. In particular, in the 8-task learning in Figure S-4, the 2D keypoint
loss has quite a small magnitude compared to the other losses. The conventional algorithms keep this loss on a small scale
throughout the training. On the other hand, the proposed algorithm trains the 2D keypoint loss in a balanced manner with the
other losses. This results in the best 2D keypoint performance in Table 5 in the main paper.
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Figure S-2. Illustration of weights and loss scales of the three tasks on the NYUv2 dataset.
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Figure S-3. Illustration of weights and loss scales of the four tasks on the Taskonomy dataset.
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Figure S-4. Illustration of weights and loss scales of the eight tasks on the Taskonomy dataset.



6. Training Visualization
Figure S-5 visualizes the regions where losses occur in each task of the 8-task learning on the Taskonomy dataset. We

compare the results of the proposed algorithm with those of equal weighting after 2, 10, and 200 training epochs. For easier
comparison, we also show the overall error map, which is the sum of the error maps of the eight tasks. Throughout the
training, edge and keypoint losses have relatively small magnitudes. For this reason, in the overall error maps of equal
weighting, edges and keypoints are less activated. In contrast, in the proposed algorithm, all scene components, including
edges and keypoints, are learned in a balanced manner, enabling the proposed algorithm to provide better MTL results.

E
q

u
al

 w
ei

g
h

ti
n

g
P

ro
p

o
se

d

RGB image

2
n

d
ep

o
ch

1
0

th
ep

o
ch

2
0

0
th

ep
o

ch
2

n
d

ep
o

ch
1

0
th

ep
o

ch
2

0
0

th
ep

o
ch

Depth Normal Curvature Reshading 2D edge 3D edge 2D keypoint 3D keypoint

Overall

Figure S-5. Visualization of losses of the 8-task learning on the Taskonomy dataset.



7. Priority Factors π
Using the PNAS-Net encoder and multi-column architecture on the NYUv2 dataset, we train the full-sharing network for

double tasks in three combinations: depth estimation and segmentation, depth and normal estimation, and normal estimation
and segmentation. Figure S-6 shows the performance of the proposed algorithm with different priority factors, compared to
fixed weighting. For the double tasks of depth and segmentation in Figure S-6(a), as well as for normal and segmentation in
Figure S-6(c), operating points of the proposed algorithm are located to the upper right side of those of fixed weighting, i.e.
the proposed algorithm performs better than fixed weighting. Also, for the double tasks of depth and normal in Figure S-6(b),
the proposed algorithm still outperforms fixed weighting meaningfully.
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(a) Depth and segmentation
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(b) Depth and normal
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Figure S-6. Performance comparison of the proposed algorithm with fixed weighting for double-task learning. The coordinates represent
priority factors (πD, πS), (πD, πN), and (πN, πS) or fixed weights (wD, wS), (wD, wN), and (wN, wS).



8. Qualitative Experimental Results
Figure S-7, Figure S-8, and Figure S-9 qualitatively compare the depth, normal, and segmentation results of the proposed

algorithm and the conventional algorithms: equal weighting, Uncert [4], DWA [7], and GLS [1] for the four types of networks
in Table 2 in the main paper. For easier comparison, estimates (odd rows) and their errors (even rows) are visualized. The
proposed algorithm provides more accurate prediction results for all four networks.
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Figure S-7. Qualitative comparison of the proposed algorithm with conventional algorithms for the full-sharing network.
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Figure S-8. Qualitative comparison of the proposed algorithm with conventional algorithms for the multi-decoder network.
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Figure S-9. Qualitative comparison of the proposed algorithm with conventional algorithms for the multi-column network.
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