
Supplementary Material: PatchMatch-RL: Deep MVS with Pixelwise Depth,
Normal, and Visibility

1. Network Architecture
We present the network architecture of our PatchMatch-RL (Table 1). We refer the readers to the original text for detailed

information on how each component is used. Our method contains a total of 149K parameters.

Name Parameters Input Output Size

I - - 3×H×W

Feature Extraction

Conv0 0 CBR, k=7, s=1, d=2 I 8×H×W
Conv0 1 CBR, k=3, s=1, d=1 Conv0 0 8×H×W
Conv1 0 CBR, k=5, s=2, d=1 Conv0 1 16×H⁄2×W⁄2
Conv1 1 CBR, k=3, s=1, d=1 Conv1 0 16×H⁄2×W⁄2
Conv1 2 CBR, k=3, s=1, d=1 Conv1 1 16×H⁄2×W⁄2
Conv2 0 CBR, k=5, s=2, d=1 Conv1 2 32×H⁄4×W⁄4
Conv2 1 CBR, k=3, s=1, d=1 Conv2 0 32×H⁄4×W⁄4
Conv3 0 CBR, k=5, s=2, d=1 Conv2 1 64×H⁄8×W⁄8
Conv3 1 CBR, k=3, s=1, d=1 Conv3 0 64×H⁄8×W⁄8
ConvL3 Conv, k=1, s=1, d=1 Conv3 1 64×H⁄8×W⁄8

ConvL3 2 UpConv, k=1, s=1, d=1 ConvL3 32×H⁄4×W⁄4
ConvL2 Conv, k=1, s=1, d=1 ConvL2 1 32×H⁄4×W⁄4

ConvL2 1 UpConv, k=1, s=1, d=1 ConvL2 16×H⁄2×W⁄2
ConvL1 Conv, k=1, s=1, d=1 ConvL1 2 16×H⁄2×W⁄2
F3 ConvL3 64×H⁄8×W⁄8
F2 ConvL3 2 + ConvL2 32×H⁄4×W⁄4
F1 ConvL2 1 + ConvL1 16×H⁄2×W⁄2

Attentional Projection

Aq
i Conv1d, k=1, s=1, d=1 Fi ||Fi||×H⁄2i×W⁄2i
Gi

∑
q Aq · (Fr

qFr
Hr→s·q) 4×H⁄2i×W⁄2i

View Scorer

View 0i CR, k=5, s=1, d=1 Gi & GeomP 8 ×H⁄2i×W⁄2i
View 1i CR, k=3, s=1, d=1 View 1i 16 ×H⁄2i×W⁄2i
View 2i Conv, k=1, s=1, d=1 View 2i 1 ×H⁄2i×W⁄2i

V̂i Sigmoid View 2i 1 ×H⁄2i×W⁄2i

Recurrent Cost Regularization

RCN 0i Conv, k=3, s=1, d=1 GVi & ζ 8 ×H⁄2i×W⁄2i
RCN 1i Conv, k=1, s=1, d=1 RCN 0i 8 ×H⁄2i×W⁄2i
RCN 2i Conv, k=1, s=1, d=1 RCN 1i 8 ×H⁄2i×W⁄2i
Zi Conv1d, k=1, s=1, d=1 RCE 2i 1 ×H⁄2i×W⁄2i

Table 1. Network Architecture Details. CBR stands for 2D convolution with batch normalization and ReLU activation. UpConv
represents bilinear upsampling followed by 2D convolution. k is kernel size, s is stride, and d is dilation. GeomP represents the encoded
geometric prior, which is explained in detail in Section 2

1

2. Geometric Priors
We describe our geometric priors: scale, incident-angle, and triangulation angle differences. Figure 1 illustrates how these

are computed. These geometric priors are used in the visibility estimation process. The scale difference is computed as a
ratio given by the source projection distance to the oriented point divided by the reference projection distance to the oriented
point. The incident-angle is obtained from the angle between the normal value of the oriented point and the ray from the
center of the source camera to the oriented point. The triangulation angle is calculated as the angle between the projection
ray of the reference and source camera centers to the oriented point. For the images and camera pose, we estimate the scale
difference as the source projection distance divided by the reference projection distance. In order to further augment the
prior information, we use positional encoding to augment the raw prior values. We use 5 encodings of sines and cosines of
increasing scale.

Figure 1. Visualization of geometric priors. From the left, the scale difference is given by the ratio between the camera to point distances.
The incident angle is given by the angle between the rays from the camera to the point. Triangulation angle is given by the angle between
the oriented point tangent normal and the ray from the source camera to the point.

3. Support Window Dilation
Since features extracted from Convolutional Neural Networks (CNN) are locally smooth, using direct neighboring pixels

as the supporting window prevents the neighbors from providing distinguishing information. Table 2 describes the impact
of dilation in the support window. We show that in both 2cm and 5cm benchmarks, having no dilation will reduce the
reconstruction accuracy (-2.7%, -1.8%) and the reconstruction is highly incomplete (-10.1%, -7.2%).

Accuracy / Completeness / F1
Model Train 2CM Train 5cm
No dilation (β = 1) 73.4 / 52.1 / 60.1 88.7 / 71.6 / 78.6
Ours (β = 3) 76.1 / 62.2 / 67.8 90.5 / 78.8 / 83.3

Table 2. Comparison of performance on the support window dilation. We compare our system (using the supporting region with
dilation of β = 3) to the system that uses direct neighboring pixels as the supporting region. For each threshold, the model with higher F1

score is marked in bold.

4. Fusion Parameters
We use different fusion parameter settings for the different benchmarks because the number of images in each set of the

ETH3D high-res benchmark is much smaller than the number of images in each set of the Tanks and Temples benchmark.
Given reference pixel p ∈ Iref and corresponding source pixel q = Href→src

ωp
· p, we first define the projection distance

threshold τproj as the distance between the projected pixel of the corresponding source depth and the reference pixel (i.e.
||p − Hsrc→ref

ωq
· q||2), relative depth threshold τrel as the relative error of the source depth and the reference depth (i.e.,

(drefp − drefq)/drefp), and angle threshold τangle as the angular difference between the oriented point normal values of the
corresponding source and reference oriented points (i.e. arccos nT

p · nq). The source pixel is marked as consistent if the
projection distance, relative error, and angular difference are less than τproj , τrel, and τangle respectively.

For all scenes of the ETH3D high-res benchmark, we use τproj = 1px, τrel = 1%, and τangle = 30◦ and keep the depth
values that are consistent across at least 1 source view. For all scenes of the Tanks and Temples benchmark, we use τproj =
1px, τrel = 1%, and τangle = 30◦. For depth consistency checks, we use 2 source views for indoor scenes (Auditorium,
Ballroom, Courtroom, Museum), 3 source views for outdoor scenes (Palace, Temple, Train, Lighthouse, Playground), and 5

source views for object scenes (Family, Francis, Horse, M60, Panther). The depth maps for each image are then averaged
over the consistent views into a point cloud.

Additionally, we fine-tune our fusion parameters to estimate the accuracy-completeness trade-off point, where the accuracy
remains at least 90% for the 2cm benchmark. Table 3 shows how this trade-off point compares to our setup. By enforcing
a stricter fusion parameter, our completeness drops heavily in both 2cm and 5cm benchmarks (-29.8%, -30.1%), making the
overall reconstruction F1 score drop accordingly (-31.5%, -29.7%). This implies that our system does not estimate points as
accurately as the methods that use high-resolution, hand-crafted features (e.g. ACMH and ACMM [4]).

Accuracy / Completeness / F1
Model Train 2CM Train 5cm
Acc-90 (0.5px/0.5%/15◦/2 Views) 90.5 / 32.4 / 46.3 97.1 / 48.7 / 63.6
Ours (1px/1.0%/30◦/1 View) 76.1 / 62.2 / 67.8 90.5 / 78.8 / 83.3

Table 3. Accuracy-Completness trade-off. We compare the accuracy completeness trade off by enforcing stricter thresholds for higher
accuracy. Acc-90 represents the setting where the fusion parameter was fine tuned to achieve near 90% accuracy in the 2cm benchmark.
Ours denotes the settings we use in the experiments. The values next to the model name are τproj , τrel, τangle, and number of consistent
source views for each pixel. For each setting, the model with higher F1 score is marked in bold.

5. Training Rewards
We provide the reward plots for the training to show how the rewards increase over time. Figure 2 shows the mean and the

standard deviation of the training rewards per half-epochs and per step. We show that the reward increases over time as we
train for more epochs. Due to the nature of the policy gradient algorithm, we also observe the variance of rewards increasing.

Figure 2. Rewards visualization. We visualize average rewards per pixel for each half-epoch and step. The shaded area in the left plot
represents the standard deviation for each half-epoch.

6. Formal Definition of Markov Decition Process
We first define the formal definitions of MDP by letting (si ∈ S, ai ∈ A, ri ∈ R) to denote the state space, the action

space, and the reward space at time i for each pixel. For sake of simplicity, we let all states contain static sub-states of
camera poses and images. Our si is a set of candidates propagated using the neighboring pixels. Our ai is a sampling of
the candidate. The state transition function Pai(si, si+1) is given by PatchMatch propagation, which generates a new set
of candidates based on a nearest neighbor search of selected candidates. The reward ri is given by comparing the selected
candidates and the ground truth.

Unlike the training of the view selection function, which uses the original REINFORCE algorithm without modification,
we use the cross entropy between the reward and the cost distributions formed by each candidates for training the candidate
scoring function. This is possible because ground truth is available.

7. Analysis of Runtime
We compare our method with PatchMatchNet [3], which achieves state-of-the-art runtime and memory usage for learned

MVS. PatchMatchNet and our work have major differences at runtime due to the use of support windows and the number of
depth candidate evaluations at each coarse-to-fine stage. Both PatchMatchNet and our method contain 3 stages (excluding the
refinement stage), where stages 1, 2, and 3 represent solving depth maps at scale 1

2 ,
1
4 , and 1

8 respectively. Stage 1 takes the
longest time since the target resolution is the highest. In stage 1, PatchMatchNet evaluates 8 candidates, while we evaluate 26
candidates for each pixel. This is because PatchMatchNet samples 8 candidates from perturbing upsampled depth values from
the previous stage without propagation, while we test 5 perturbed candidates and 8 propagated candidates for two iterations.
On our hardware, PatchMatchNet takes 0.177s to evaluate 8 candidates at stage 1, and the average depth map evaluation is
about 0.022s. We take 4.54s per evaluating 13 candidates at stage 1, and each depth map evaluation takes about 0.349s on
average. Since we evaluate 9 supporting pixels for each center pixel, it takes around 0.038s for each supporting pixel of each
depth map. Another factor is that we use more images: 10 source images instead of 7. Table 4 shows an in-depth overview
of runtime per image on the ETH3D benchmark.

Stage Resolution Num Iterations Num Candidates Runtime

3 H/8×W/8 8 13 4.89s
2 H/4×W/4 2 13 3.57s
1 H/2×W/2 2 13 4.54s

Table 4. Runtime Analysis per stage. We measure the average runtime per stage for each images in ETH3D benchmark dataset. We use
image resolutions of 1920× 1280 with 10 source images for each view.

8. Additional qualitative results
Figure 3 and Figure 4 show our point cloud reconstructions of the ETH3D [2] High-res train and test sets respectively.

Figure 5 and Figure 6 show our results for the Tanks and Temples [1] dataset.

Figure 3. Additional Qualitative Results for ETH3D High-Res [2] Train set.

Figure 4. Additional Qualitative Results for ETH3D High-Res [2] Test set.

Figure 5. Additional Qualitative Results for Tanks and Temples [1] Intermediate set.

Figure 6. Additional Qualitative Results for Tanks and Temples [1] Advanced set.

References
[1] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking large-scale scene reconstruction.

ACM Transactions on Graphics, 36(4), 2017. 4, 7, 8
[2] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc Pollefeys, and Andreas Geiger.

A multi-view stereo benchmark with high-resolution images and multi-camera videos. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 4, 5, 6

[3] Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, and Marc Pollefeys. Patchmatchnet: Learned multi-view patch-
match stereo, 2020. 4

[4] Qingshan Xu and Wenbing Tao. Multi-scale geometric consistency guided multi-view stereo. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5483–5492, 2019. 3

