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1. Details of Datasets

To demonstrate the performance of the Self-Mutating
Network, four datasets including our Urban dataset
(OUD), an Inria dataset [4], a WHU dataset [3], and a
Massachusetts Building dataset [5] are utilized. Images
in each domain have different characteristics in terms of
resolutions, locations, time, and architecture styles.

1.1. Our Urban Dataset

9,000 images of various areas in the three cities of
Seoul, Suwon, and Daegu, which are ones of the most
complex cities in Korea, are constructed for the OUD
dataset. The data consisted of RGB images with a reso-
lution of 0.61 m and the corresponding ground truths for
binary classes. The dataset covered an area of 147.46 km2

and was divided into an area of 110.59 km2 for training
and an area of 36.87 km2 for testing. The images had a
pixel size of 256×256.

1.2. Inria Dataset

As the public data, an Inria dataset[4] was utilized in
the experiments. The Inria dataset covered the area of
405 km2. The aerial image had a spatial resolution of
0.3m and covers five cities such as Austin, Chicago, Kitsap,
Tyrol, and Vienna. Here the image sets were randomly
cropped into the size of 256× 256 from the original size
of 5000×5000, and a total of 144,000 images were utilized
for each city.

1.3. WHU Building Dataset

From the WHU Building Dataset, we used one of Satel-
lite Dataset I. The dataset was collected from cities over
the world and from various remote sensing resources in-
cluding QuickBird, Worldview series, IKONOS, ZY-3, etc
[3]. The WHU dataset contains 204 images of which size is
512×512 but randomly cropped so that a total number of
20,400 images are constructed for the WHU dataset. Here,
the resolutions of the WHU dataset varies from 0.3 m to
2.5 m.

1.4. Massachusetts Buildings Dataset

The Massachusetts Building Dataset consists of 151
aerial images of the Boston area. The size of the images
is 1500 × 1500 pixels for an area of 2.25km2, and thus
the entire dataset covers roughly 340km2. The data was
split into a training set of 137 images, a test set of 10 im-
ages, and a validation set of 4 images [5]. Here, we ran-
domly cropped the original images to the small images
of which size was 256 × 256, and a total of 16,577 im-
ages were utilized to the Massachusetts dataset. In the
Massachusetts Building Dataset, the target maps were ob-
tained by rasterizing building footprints obtained from
the OpenStreetMap project. The Massachusetts Building
Dataset is a large amount of high-quality building foot-
print data. The dataset covers mostly urban and subur-
ban areas, including buildings with various sizes, individ-
ual houses, and garages, are included in the labels [5].

2. Architecture description

The SMN has four trainable CNN-based architectures;
an encoder, a discriminator, a decoder for a segmap, and
a decoder for a generator. Table 1 illustrates the detailed
layers of SMN. The architecture of the discriminator is the
same with a previously designed discriminator [2]. The
baseline of the SMN is devised from the SegNet [1] for the
encoder and the decoder. Note that, the decoders for a
segmap and a generator share the values (Upsampling1 -
Upsampling4). However, only two layers of two decoders
are different (See Logit in Table 1).

3. Hyper-parameter selection

In Eq. 6 and Eq. 7, hyper-parameter values (λ1, λ2, and
λ3) are utilized to determine a degree of the optimization
of GAN in a prediction step. The hyper-parameter val-
ues affect the performance and prediction speed of SMN.
Therefore, the values of hyper-parameters, which can of-
fer high accuracy and fast prediction time, were here de-
termined for SMN. As shown in Fig. 1, λ1, λ2, and λ3 were
determined to be 0.01, 0.87, and 0.40 to achieve high ac-
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Table 1: The detailed architecture of a self-mutating network. SegNet is utilized as a baseline architecture for the SMN.
The layers of decoders for a segmap and a generator are the same except for the last layers. A discriminator for GAN-
based architecture is the same with that of a basic GAN [2]. Here, the Conv + BN + ReLU includes batch normalization
(BN) and an activation function (ReLU).

name image size
operation

channel
encoder

Input image 256×256 3

Encoder

Down 1
256×256 3×3 Conv + BN + ReLU 64

256×256 3×3 Conv + BN + ReLU 64

128×128 Maxpooling 64

Down 2
128×128 3×3 Conv + BN + ReLU 128

128×128 3×3 Conv + BN + ReLU 128

64×64 Maxpooling 128

Down 3
64×64 3×3 Conv + BN + ReLU 256

64×64 3×3 Conv + BN + ReLU 256

64×64 3×3 Conv + BN + ReLU 256

64×64 3×3 Conv + BN + ReLU 256

32×32 Maxpooling 256

Down 4
32×32 3×3 Conv + BN + ReLU 512

32×32 3×3 Conv + BN + ReLU 512

32×32 3×3 Conv + BN + ReLU 512

32×32 3×3 Conv + BN + ReLU 512

16×16 Maxpooling 512

Bridge Bottom
16×16 3×3 Conv + BN + ReLU 512

16×16 3×3 Conv + BN + ReLU 512

name image size
operation

channel
decoder for a segmap decoder for a generator

Decoder

Upsampling 1

32×32 Deconvolution + 3×3 Conv + BN 512

32×32 3×3 Conv + BN + ReLU 512

32×32 3×3 Conv + BN + ReLU 512

Upsampling 2

64×64 Deconvolution + 3×3 Conv + BN 256

64×64 3×3 Conv + BN + ReLU 256

64×64 3×3 Conv + BN + ReLU 256

Upsampling 3

128×128 Deconvolution + 3×3 Conv + BN 128

128×128 3×3 Conv + BN + ReLU 128

128×128 3×3 Conv + BN + ReLU 128

Upsampling 4

256×256 Deconvolution + 3×3 Conv + BN 64

256×256 3×3 Conv + BN + ReLU 64

256×256 3×3 Conv + BN + ReLU 64

Logit
256×256 3×3 Conv + BN + ReLU 64

. 256×256 3×3 Conv 3×3 Conv + tanh 2/64

256×256 SoftMax 3×3 Conv + tanh 2/3

curacy. With the restriction of Eq. 6 and 7, the predic-
tion time by SMN was not significantly prolonged. It was
only 20% longer than that by a conventional deep learn-

ing model. Despite the limitation of the optimization by
parameter mutation, the fine-tuning of architecture occu-
pies most of the prediction time. Even though the predic-



Figure 1: The prediction accuracy along the hyper-parameter values of SMN. The values of hyper-parameters, which
generate accuracy within an appropriate range, were adopted to the SMN. The graphs have been ensemble-averaged.

tion time is not important in the field of an aerial image
segmentation, the prediction time needs to be reduced. It
remained as a future work.

4. Mathematical proof

Since the center of convolution parameters is the same
after PF, the summation of convlution filters in the vec-
tor space is also the same. Therefore,

∑
pi = ∑

pi ‘ where
pi are parameters before PF, and p‘i are parameters af-
ter PF. Therefore, PF is invariant to invertible linear trans-
formation and it can be considered as Centered Kernel
Alignment (Kornblith 2019). Thus, the similarity index
remains after PF. In addition, while a fluctuation vector
( fi ) is added to parameters, a feature-map (F ) after PF-
applied convolution (C ) can be approximated as F ◦C +
| fi F |. Therefore, the variance of a generated feature-map
remains, but the expectation is E(F ◦C )+| fi F |5 E(F ◦C )+
λ1|F |. That is, after PF, only a small value of λ1 can guar-
antee a similar expectation value which leads to a simi-
lar normal distribution as well as a similar KL divergence.
Furthermore, we investigated the structural similarity be-

Figure 2: The similarity index between predictions by the
original and fine-tuned models.

tween predictions by the original optimized model and
the fine-tuned model with PF. As shown in Fig. 2, a small
value of λ1 guarantees a similar prediction.

5. Details of Experiment

We compared the performance of SMN to that of other
state-of-the-art models utilized in the domain adapta-
tion of aerial images these days. As illustrated in the
manuscript, Fig. 9 illustrates the comparison results of
SMN and the others. Fig. 9(a) represents the IoU values of
predicted buildings by FDA, DDA, DATA, TreeUNet, and
SMN. Here, the illustrated dataset is utilized as a training
set, and images in other domains are utilized as a test set.
SMN exhibits the highest IoU values of 0.643, 0.635, 0.627,
and 0.624 compared to other state-of-the art models in
the case of Inria, Mass, WHU, and OUD, respectively. In
particular, SMN offers an 8.48% higher IoU value than
others. Fig. 9(b) represents the IoU values of predicted
buildings by FDA, DDA, DATA, TreeUNet, and SMN. Here,
two datasets are used as a training set whereas images in
other two domains are used as a test set. SMN shows the
highest IoU values of 0.698, 0.668, 0.717, 0.670, 0.692, and
0.686 in the case of I+O, W+M, W+O, M+O, I+M, and I+W,
respectively. Furthermore, SMN offers the 11.19% higher
IoU value than other models. The corresponding results
are illustrated in Table 3 and Table 4. Furthermore, as il-
lustrated in Fig. 9, SMN shows the highest IoU values in
every domain, and its mean IoU values are also higher
than those of other state-of-the-art networks. In addition,
Fig. 3-8 show the predicted segmentation maps of build-
ings using SMN. It shows that SMN offer the clear bound-
aries of buildings in all domains of aerial images with high
performance.



6. Additional Experiment

To search a novel deep learning network that has a
higher performance of domain adaptation and segmen-
tation using SMN, we carried out additional experiments
using the state-of-the-art models(the 1st and 2nd ranked
models) listed in CSAILVision and the baseline models in-
troduced in the related papers. The BiseNet and Deep-
UNet are used as baseline models. The experimental re-
sults demonstrated that our method outperformed other
DA methods, with a significant improvement in terms of
IoU. The results demonstrate that our model shows the
maximum and minimum improvements of 12.06% and
3.97%, which are huge improvements in domain adapta-
tion and segmentation, compared to other models.

Table 2: Supplemental experiments using state-of-the-art
and baseline models. Tree indicates TreeUNet, BL indi-
cates a baseline model, and M.I indicates a maximum im-
provement (SMN - min(others)).

BiseNet BS FDA DATA Tree SMN M.I
I+O 0.552 0.648 0.610 0.656 0.731 12.06%

W+M 0.555 0.625 0.662 0.626 0.682 5.72%
W+O 0.550 0.658 0.617 0.640 0.684 6.74%
M+O 0.555 0.639 0.653 0.646 0.701 6.26%
I+M 0.552 0.620 0.643 0.660 0.686 6.57%
I+W 0.557 0.634 0.619 0.659 0.698 7.96%

I+O 0.539 0.596 0.606 0.597 0.636 3.97%
W+M 0.547 0.613 0.625 0.612 0.694 8.25%
W+O 0.555 0.650 0.645 0.629 0.701 7.16%
M+O 0.545 0.613 0.641 0.611 0.705 9.39%
I+M 0.551 0.620 0.606 0.638 0.663 5.68%
I+W 0.558 0.666 0.620 0.654 0.687 6.68%

DeepUNet BS FDA DATA Tree SMN M.I
I+O 0.562 0.650 0.631 0.627 0.682 5.54%

W+M 0.548 0.612 0.622 0.647 0.687 7.54%
W+O 0.559 0.619 0.641 0.663 0.712 9.28%
M+O 0.552 0.651 0.609 0.661 0.702 9.29%
I+M 0.550 0.656 0.617 0.650 0.702 8.45%
I+W 0.560 0.632 0.622 0.670 0.690 6.79%

HRNetV2 BS FDA DATA Tree SMN M.I
I+O 0.591 0.654 0.658 0.662 0.756 10.19%

W+M 0.558 0.640 0.661 0.647 0.723 8.30%
W+O 0.554 0.640 0.621 0.637 0.695 7.36%
M+O 0.558 0.664 0.620 0.640 0.688 6.75%
I+M 0.557 0.669 0.643 0.644 0.688 4.50%
I+W 0.547 0.613 0.610 0.605 0.664 5.91%

EfficientNet BS FDA DATA Tree SMN M.I
I+O 0.596 0.686 0.674 0.705 0.746 7.21%

W+M 0.550 0.615 0.615 0.624 0.681 6.64%
W+O 0.553 0.623 0.661 0.629 0.708 8.49%
M+O 0.547 0.603 0.647 0.637 0.674 7.12%
I+M 0.559 0.643 0.615 0.635 0.679 6.42%
I+W 0.547 0.631 0.618 0.631 0.713 9.47%
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Figure 3: The predicted segmentation-map by deep learning models which are trained using Inria Dataset and OUD. The
images in the second row are cropped and resized from the original images of the predicted segmentation-maps.

Figure 4: The predicted segmentation-map by deep learning models which are trained using Inria and WHU Building
datasets. The images in the second row are cropped and resized from the original images of predicted segmentation-
maps.



Figure 5: The predicted segmentation-map by deep learning models which are trained using Inria and Massachusetts
Building datasets. The images in the second row are cropped and resized from the original images of predicted
segmentation-maps.

Figure 6: The predicted segmentation-map by deep learning models which are trained using Massachusetts Building and
WHU Building datasets. The images in the second row are cropped and resized from the original images of predicted
segmentation-maps.



Figure 7: The predicted segmentation-map by deep learning models which are trained using OUD and WHU Building
datasets. The images in the second row are cropped and resized from the original images of predicted segmentation-
maps.

Figure 8: The predicted segmentation-map by deep learning models which are trained using Massachusetts Build-
ing and OUD datasets. The images in the second row are cropped and resized from the original images of predicted
segmentation-maps.



Table 3: The experimental result. The illustrated domain is utilized as a training set whereas other domains are used as
a test set. For example, in the first case of Inria Building Dataset, the Inria Building dataset is used for a training set and
other three datasets of Massachusetts Building, WHU Building, and Our Urban datasets are utilized as a test set. The
highest value is marked as bold, and the second one is underlined. The maximum performance difference between SMN
and other networks is 8.48%.

IoU Trial I Trial II Trial III Trial IV Trial V Trial VI Average MAX MIN

Inria Building Dataset
Max. Improvement 0.97% 5.95%
FDA 0.5933 0.6437 0.6010 0.6384 0.6060 0.6121 0.6158 0.6437 0.5933
DDA 0.5842 0.6402 0.6232 0.6118 0.6218 0.5958 0.6128 0.6402 0.5842
DATA 0.6058 0.6377 0.5966 0.6295 0.6259 0.6201 0.6193 0.6377 0.5966
TreeUNet 0.5903 0.6367 0.6212 0.6172 0.5987 0.6076 0.6120 0.6367 0.5903
SMN 0.6092 0.6437 0.6280 0.6426 0.6283 0.6220 0.6290 0.6437 0.6092
Massachusetts Buildings Dataset
Max. Improvement 1.23% 6.82%
FDA 0.5908 0.6217 0.6046 0.5814 0.5918 0.6207 0.6018 0.6217 0.5814
DDA 0.5675 0.6060 0.6196 0.5916 0.5824 0.6235 0.5984 0.6235 0.5675
DATA 0.5770 0.6023 0.6283 0.5970 0.5886 0.6293 0.6038 0.6293 0.5770
TreeUNet 0.5685 0.6088 0.6172 0.5839 0.5805 0.6164 0.5959 0.6172 0.5685
SMN 0.5910 0.6293 0.6324 0.6017 0.6066 0.6357 0.6161 0.6357 0.5910
WHU Building Dataset
Max. Improvement 1.15% 5.33%
FDA 0.5920 0.5922 0.6068 0.6134 0.6115 0.6082 0.6040 0.6134 0.5920
DDA 0.5999 0.5941 0.5876 0.6116 0.6066 0.5921 0.5986 0.6116 0.5876
DATA 0.5741 0.5943 0.5924 0.6224 0.5993 0.6079 0.5984 0.6224 0.5741
TreeUNet 0.5837 0.6014 0.6087 0.6049 0.6266 0.6199 0.6075 0.6266 0.5837
SMN 0.6040 0.6230 0.6124 0.6268 0.6274 0.6204 0.6190 0.6274 0.6040
Our Urban Dataset
Max. Improvement 1.13% 6.57%
FDA 0.5588 0.5978 0.5978 0.6214 0.5628 0.6092 0.5913 0.6214 0.5588
DDA 0.5598 0.6178 0.6063 0.6099 0.5744 0.6109 0.5965 0.6178 0.5598
DATA 0.5820 0.6133 0.5873 0.5940 0.5767 0.6049 0.5930 0.6133 0.5767
TreeUNet 0.5770 0.6228 0.6120 0.6033 0.5692 0.5997 0.5973 0.6228 0.5692
SMN 0.5850 0.6245 0.6132 0.6234 0.5916 0.6138 0.6086 0.6245 0.5850
Total Maximum Improvement (MAX - MIN) 3.77% 8.48%



Table 4: The experimental result. The illustrated two domains are utilized as a training set wherea other two domains are
used as a test set. For example, in the first case of Inria Building Dataset + WHU Building Dataset, the Inria Building and
WHU Building datasets are used for the training set, and other two datasets of Massachusetts Building and Our Urban
datasets are utilized as a test set. The highest value is marked as bold, and the second one is underlined. The maximum
performance difference between SMN and other networks is 11.19%.

IoU Trial I Trial II Trial III Trial IV Trial V Trial VI Average MAX MIN

Inria Dataset + Our Urban Dataset
Max. Improvement 1.06% 9.36%
FDA 0.6446 0.6924 0.6745 0.6640 0.6715 0.6635 0.6684 0.6924 0.6446
DDA 0.6436 0.6863 0.6590 0.6578 0.6632 0.6455 0.6592 0.6863 0.6436
DATA 0.6350 0.6859 0.6654 0.6443 0.6767 0.6607 0.6614 0.6859 0.6350
TreeUNet 0.6381 0.6947 0.6812 0.6634 0.6581 0.6584 0.6657 0.6947 0.6381
SMN 0.6592 0.6985 0.6864 0.6707 0.6847 0.6653 0.6775 0.6985 0.6592
WHU Building Dataset + Massachusetts Building Dataset
Max. Improvement 0.79% 4.36%
FDA 0.6303 0.6279 0.6325 0.6414 0.6390 0.6610 0.6387 0.6610 0.6279
DDA 0.6209 0.6436 0.6243 0.6600 0.6397 0.6482 0.6395 0.6600 0.6209
DATA 0.6121 0.6266 0.6298 0.6339 0.6288 0.6568 0.6313 0.6568 0.6121
TreeUNet 0.6049 0.6338 0.6376 0.6438 0.6260 0.6404 0.6311 0.6438 0.6049
SMN 0.6310 0.6514 0.6378 0.6610 0.6504 0.6679 0.6499 0.6679 0.6310
WHU Building Dataset + Our Urban Dataset
Max. Improvement 1.21% 6.98%
FDA 0.6549 0.7064 0.7005 0.6832 0.6788 0.6744 0.6830 0.7064 0.6549
DDA 0.6471 0.7040 0.6999 0.6627 0.6623 0.6911 0.6778 0.7040 0.6471
DATA 0.6526 0.6887 0.6999 0.6798 0.6888 0.6907 0.6834 0.6999 0.6526
TreeUNet 0.6621 0.6879 0.6963 0.6709 0.6743 0.6856 0.6795 0.6963 0.6621
SMN 0.6740 0.7157 0.7168 0.6852 0.6900 0.6915 0.6955 0.7168 0.6740
Massachusetts Building Dataset + Our Urban Dataset
Max. Improvement 1.34% 6.15%
FDA 0.6159 0.6402 0.6486 0.6420 0.6395 0.6586 0.6408 0.6586 0.6159
DDA 0.6284 0.6579 0.6280 0.6248 0.6330 0.6501 0.6370 0.6579 0.6248
DATA 0.6229 0.6456 0.6325 0.6346 0.6330 0.6497 0.6364 0.6497 0.6229
TreeUNet 0.6088 0.6369 0.6486 0.6432 0.6539 0.6477 0.6398 0.6539 0.6088
SMN 0.6350 0.6633 0.6502 0.6458 0.6607 0.6703 0.6542 0.6703 0.6350
Inria Dataset + Massachusetts Building Dataset
Max. Improvement 1.22% 6.09%
FDA 0.6382 0.6408 0.6657 0.6762 0.6345 0.6690 0.6541 0.6762 0.6345
DDA 0.6459 0.6272 0.6613 0.6641 0.6307 0.6820 0.6519 0.6820 0.6272
DATA 0.6444 0.6476 0.6625 0.6637 0.6323 0.6643 0.6525 0.6643 0.6323
TreeUNet 0.6334 0.6279 0.6464 0.6817 0.6507 0.6710 0.6519 0.6817 0.6279
SMN 0.6472 0.6545 0.6706 0.6818 0.6553 0.6882 0.6663 0.6882 0.6472
Inria Dataset + WHU Building Dataset
Max. Improvement 1.47% 5.94%
FDA 0.6462 0.6470 0.6469 0.6510 0.6835 0.6548 0.6549 0.6835 0.6462
DDA 0.6460 0.6489 0.6636 0.6453 0.6862 0.6717 0.6603 0.6862 0.6453
DATA 0.6348 0.6530 0.6528 0.6468 0.6661 0.6808 0.6557 0.6808 0.6348
TreeUNet 0.6420 0.6606 0.6518 0.6545 0.6766 0.6706 0.6593 0.6766 0.6420
SMN 0.6602 0.6727 0.6692 0.6714 0.6942 0.6821 0.6750 0.6942 0.6602
Total Maximum Improvement (MAX - MIN) 6.45% 11.19%



(a) Training using one domain and testing with other three domains. (b) Training using two domains and testing with other two domains.

Figure 9: The segmentation results of SMN compared to other state-of-the-art networks. The illustrated dataset is used
as a training set, and other datasets of different domains are utilized as a test set.


