
Method Small Large All All F-1
Ours-I 0.3132 0.9188 0.8143 0.8295(No sampling) 0.4551 0.9379 0.8452
Ours-P-U 0.2702 0.8933 0.8111 0.8319(1024-0-0) 0.6068 0.9124 0.8537
Ours-P-US 0.3209 0.9055 0.8300 0.8460(512-512-0) 0.5944 0.9264 0.8627
Ours-P-UB 0.3112 0.9068 0.8293 0.8455(512-0-512) 0.6037 0.9213 0.8603
Ours-P-USB 0.3607 0.9025 0.8310 0.8494(512-256-256) 0.6161 0.9286 0.8686

Table 1. Ablation experiments for 5 different point sampling rules.
In each cell of the table, the upper and lower values represent pre-
cision and recall, respectively. Point samples consist of uncertain
points (U), false positive small object points (S) and memory bank
points (B). The number of samples is shown in the order of U-S-B.
Our new sampling rule shows the best result for small objects and
all objects.

Supplementary Material

A. Implementation Details

We use U-net [13] based on ResNet-101 [5] as back-bone
network. The edge detection network is trained in a similar
way to ScribbleNet [14]. The point features are extracted
from the D-dimension feature map of the last layer of the
decoder, which has the same width and height as the input
image. D is set to 32 for ResNet-101 U-net. The extracted
point feature is input to the prediction head that consists
of three 32-channel point-wise convolutional layers, which
outputs C-class prediction.

The total number of sampled points is 1024. First, the
number of uncertain points NU is set to 512. We sam-
pled uncertain points in a similar way to PointRend [8].
In PointRend, some points with the class probability value
close to 0.5 are selected, and others are sampled at random.
Instead, we select the points with the highest entropy of the
class probability. The number of false positive small object
point samples, NS is set to 256. The number of memory
bank point samples, NB is set to 256. And the number of
replaced bank items, NK is set to 32. There is no significant
change according to the value of NK .

We use the batch size of 20. The training is performed
for 100K iterations. The initial learning rate is set to 10−4

for 50K iterations, and 10−5 for next 50K iterations. We use
He [4] initialization for weight initialization and Adam [7]
for optimization. We use L-2 regularization for the weights.

For evaluation, the MS COCO’s evaluation method [9]
is used to evaluate the performance of small objects sepa-
rately. Average precision and recall are used, and the per-
formance for small objects, large objects, and all objects are
shown separately. The F-1 scores are also presented.

Method Small Large All All F-1

No memory 0.3209 0.9055 0.8300 0.84600.5944 0.9264 0.8627

MNAD [12] 0.3378 0.9021 0.8225 0.83840.5573 0.9257 0.8549

Pure bank [3] 0.3248 0.9039 0.8291 0.84530.5975 0.9249 0.8621

Ours-P-USB 0.3607 0.9025 0.8310 0.84940.6161 0.9286 0.8686

Table 2. Ablation experiments according to memory bank architec-
ture. In each cell of the table, the upper and lower values represent
precision and recall, respectively. MNAD [12] shows bad results
because it only reads memory items similar to input query features.
Pure bank [3] does not show improvement, because less-consistent
features can disturb training. The proposed memory bank shows
improvement, due to the update of stored features.

B. Ablation Studies

We conduct ablation studies to analyze each element of
our proposed method. The effects of the point sampling
rule, the memory bank architecture, the network architec-
ture, hyper-parameters (NK and r) and the ways of separat-
ing small object prediction will be analyzed in this supple-
mentary material.

Point sampling rule Table 1 shows the performance
comparison according to the 5 different point sampling
rules since performance is more affected by the sampling
rule rather than the total number of samples as mentioned
also in PointRend [8]. Compared to Ours-I which does not
use the point sampling, the uncertain point sampling (Ours-
P-U) increased detection of small objects, improving recall,
but lowering precision due to the false positive. The per-
formance for the large object itself is reduced due to the
side effect of the increased small object detection. The
false positive small object point samples (Ours-P-US) de-
creases the recall slightly, but increases the precision mod-
erately compared to Ours-P-U. The detection performance
of large objects also improves slightly. We use the mem-
ory bank point samples for additional labeled small object
data (Ours-P-UB), but the experiment shows that the effect
of reducing false positive is strong, like Ours-P-US which
uses false positive small object point samples. Since these
two types of sample points are differently extracted, they
could be applied together (Ours-P-USB) for additional per-
formance improvement. Compared to Ours-P-US and Ours-
P-UB, there is a moderate improvement in the precision of
small objects, and slight improvement in the recall of small
objects.

Memory bank Table 2 compares 4 memory bank archi-
tectures. When we use MNAD [12] or pure queue-based
memory bank proposed in MoCo [3] instead of the pro-



Method Small Large All All F-1

S [14] 0.0020 0.5650 0.4758 0.48950.0074 0.6221 0.5041

RU+Le+Lb
0.1321 0.7436 0.6328 0.65640.1610 0.8057 0.6819

RU 0.1527 0.9028 0.7652 0.77370.1920 0.9227 0.7824

RU+wsize [1] 0.2593 0.9145 0.7941 0.80530.3251 0.9338 0.8169

Ours-I 0.3132 0.9188 0.8143 0.82950.4551 0.9379 0.8452

Table 3. Ablation experiments for 5 different network architec-
tures. In each cell of the table, the upper and lower values represent
precision and recall, respectively. ScribbleNet [14] (S) shows poor
result, and the replacement of back-bone network with ResNet-
101 U-net (RU+Le+Lb) shows better results. But the performance
of pure ResNet-101 U-net (RU) for large objects is better than
RU+Le+Lb. The addition of size weight [1] (RU+wsize) improves
the performance. Our method using whole pixels in an image with-
out sampling (Ours-I) shows the best result.

posed memory bank, we observe similar or slightly lower
performance than no memory.

This is because MNAD adopts soft reading for queries
and it ignores the memory item not similar to input query
features. And there occurs a possibility of using the average
value of all memory items with different clusters, which can
interfere with the training. MNAD updates its network pa-
rameters using the loss related to the distribution of memory
samples. It can be helpful for anomaly detection, but maybe
not for segmentation. On the other hand, our memory bank
updates memory items for consistency with current mini-
batch, increasing performance.

When we use the pure bank, small object features of vari-
ous previous iterations can be retrieved, but making some of
the features less-consistent. MoCo uses a pure queue-based
memory bank to discard old mini-batch, but its slowly up-
dated sub-network can be a problem. On the other hand, the
memory bank we proposed has moderately improved per-
formance for small objects, because it uses a writing policy
of memory network to update memory samples, with the
modification of entropy-based gating value.

Network architecture We compare 5 different net-
work structures as shown in Table 3. The original Scrib-
bleNet [14] (S) shows poor performance.

We replace the shallow encoder and the bilinear-
interpolation-based decoder with ResNet-101 U-Net, which
is called as RU+Le+Lb. As a result, the output image size
becomes equal to that of an input image and the perfor-
mance is improved. The pure ResNet-101 U-net (RU) im-
proves the performance further compared to RU+Le+Lb be-
cause the use of the loss based on edge or boundary could

Method Small Large All All F-1

No separation 0.2914 0.9171 0.8148 0.83070.4737 0.9360 0.8472

Multi-branch 0.2987 0.9231 0.8204 0.82810.4118 0.9366 0.8359

Multi-class 0.3132 0.9188 0.8143 0.82950.4551 0.9379 0.8452

Table 4. Ablation experiments for 3 different ways to process small
object predictions. The no separation method uses 2 classes of ob-
ject and background without distinguishing small objects and large
objects. There are two ways to separately predict small objects.
The multi-branch method separates the branches for the predic-
tion according to object size as in [2]. The multi-class approach
employs the classes of background, small object, and large object.
Performance is similar, but we use the multi-class approach due to
easier sampling of small objects.

NK Small Large All
8 0.4329 0.9066 0.8402

16 0.4437 0.9151 0.8482
32 0.4550 0.9154 0.8494
64 0.4459 0.9146 0.8485

Table 5. Ablation experiments for hyper-parameter NK . F-1
scores are similar, but the results with NK=32 are slightly better.

be problematic for fully labeled large objects.
The size weight [1] (RU + wsize) improves the small ob-

ject detection performance, whereas the resulting shapes are
suffered by circular artifacts as shown in Figure 1. Our pro-
posed network considering whole pixels with the small ob-
ject mask in an image without sampling (Ours-I) yields the
best performance compared with the baseline methods.

Small object prediction In Table 4, we compare 3 dif-
ferent methods to process small object predictions with
Ours-I. The no separation method uses 2 classes of object
and background. The multi-branch [2] method uses a net-
work consisting of two branches for small objects and large
objects, respectively. The proposed multi-class method dis-
tinguishes small and large objects, resulting in 3 prediction
classes of background, small object, and large object.

All methods show similar performance. In other words,
the multi-branch and multi-class methods do not help to im-
prove performance if small objects are labeled by points as
we propose. The sampling of small objects of the multi-
branch method is time-consuming. But, our multi-class
method allows the easier sampling of the false positive
points of small objects based on the false positive score.

Overview We show the abstraction of our method in Fig-
ure 3. Inference is done without the memory network and
the point sampling. During training, we virtually increase
the number of small object labels using the memory.



r S→B S→U B→U
7 12.5185 80.3164 0.4803
14 2.7547 90.1139 1.7606
21 0.8959 91.9586 3.6034
28 0.3603 92.4868 5.5768
35 0.2312 92.6546 7.9156

Table 6. The relative percentage of area of label change according
to the value of radius r. S→B (magenta in Figure 4(d)) shows
the erroneous label change from small objects to background with
respect to the area of small objects, S→U (yellow in Figure 4(d))
is the label change from small objects to unknown with respect to
the area of small objects, and B→U (cyan in Figure 4(d)) shows
the label change from background to unknown with respect to the
area of background.

r Small Large All
7 0.4389 0.8850 0.8179

14 0.4381 0.9151 0.8478
21 0.4550 0.9154 0.8494
28 0.4459 0.9137 0.8476
35 0.4497 0.9153 0.8482

Table 7. Ablation experiments for hyper-parameter r. r = 7 shows
poor performance because of large mislabeling (S→B) as shown
in Table 6. But the label missing (S→U, B→U) doesn’t affect
the performance significantly. F-1 scores of r=14∼35 are simi-
lar, meaning that we have some degree of freedom on selection of
r. But we select r=21 because the results with r=21 are slightly
better.

Hyper-parameters Table 5 shows the performance
comparison according to the number of bank items re-
placed, NK . It controls feature diversity and old data re-
placement. Although the performance does not change
much, the value of NK is set to 32 because it shows slightly
better performance.

Change of the value of radius r could cause label
change as shown in Table 6 and Figure 4. We have high
mislabeling(S→B) with r=7, and it is changed to label
missing(S→U) when r increased to 14. And there is not
much change from r=14 to 35. This tendency is also re-
flected in performance with different values of r as shown
in Table 7. Performance is lowest when we use r=7, but
it remains similar from r=14∼35. Thus, it seems that we
have a some freedom of choosing the value of r in some
range, implying the background point can be easily chosen
to some degree during human labeling. In other words, less
time-consuming labeling is possible by setting r appropri-
ately. In our experiments, the value of r is set to 21 because
it shows slightly better performance.
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Figure 1. Experimental results on CrowdAI dataset [11]. (a) Input image. (b) ScribbleNet [14]. (c) RU+wsize [1]. (d) Ours-I. (e) Ours-P-U.
(f) Ours-P-USB. (g) Ground truth.

Figure 2. Experimental results on WHU building dataset [6] (1st row) and Massachusetts buildings dataset [10] (2nd row). (b) RU+wsize.
(c) Ours-P-USB. (d) Point label. (e) Full label.



Figure 3. Overall process of the proposed method. Sampling points that are uncertain (high entropy of class prediction probability), false
positive (predicted as small object although their ground truth are either background or large object), and updated (labeled as background
or small object inside the circles).

Figure 4. Imperfect point-labeled image with small radius (r = 7). (a) Input image. (b) Point label. (c) Full label. (d) Overlap of point
label and full label. There occur 3 types of label change. The first one (yellow) and the second one (cyan) is changed from small object to
unknown region and from background to unknown region, respectively. The third one (magenta) is erroneously changed from small object
to background.


