Supplementary Materials

1. Pseudo-code of WETAS Framework

Algorithm 1 shows the pseudo-code of training the
framework. In practice, the model parameters are updated
by using minibatch SGD with the Adam optimizer [5].

Algorithm 1: Optimizing the WETAS framework

Input: A training set containing /V instances of temporal
data {(X®, D), . (XED y Dy}
Output: Updated DICNN model f(-; ©) and the anomaly
weight vector w
1 while convergence do
2 fori=1,...,N do

> Compute the local anomaly scores

3 h§2)7"'7h¥):f(xgl)7"'7x¥);®) .
4 s(ll),...,s(;) = J(WThgn),...,U(WTh,(;))

> Compute the global anomaly score
5 h = global—pooling(hgi)7 e h¥))
6 sgf) = J(WTth))

> Obtain the sequential pseudo-label
(@) () _

7 my’, ..., My
min—max—norm(wTh(li), .. 7wTh(Ti))
8 E(j.) =y pr(mi”, ... ’_méf)) :
) 20 =1y gr(m”,...,mi)
> Calculate the two losses
10 Le=—yPlogs? — (1 —yD)log(1 — sff))
1 L, = max(0, (1/T) - DTW,, (z{, X))
—(1/T) - DTW, (7, X?) 4 8)
12 L=Lc+La
> Update all the model parameters
13 ©=0-7n-0L/00
14 w=w-—n-90L/0w

2. Computation of Dynamic Time Warping

The dynamic time warping (DTW) discrepancy (and
the optimal alignment matrix) between two time-series of
lengths M and N is usually computed by solving a dy-
namic program based on Bellman recursion, which takes a
quadratic O(M N) cost. The continuous relaxation of DTW
(i.e., soft-DTW), which enables to calculate the gradient of
DTW with respect to its input, also can be computed in a
similar way to the original DTW [1]. Algorithm 2 presents

the detailed algorithms for computing DTW.,(z, X) and
Va@x)DTW,(z, X) based on Bellman recursion.

Algorithm 2: Forward recursion and back-
ward recursion to compute DTW.(z,X) and
Va@ex)DTW,(z, X)

1 Function forward (z, X):
> Fill the alignment cost matrix R €
Roo=0
R.o = Rp,. =00
forl=1,...,Ldo
L fort=1,...,7T do

RLXT

L7 L

L Ry =0(Z,x¢) + miny{R;—1,t—1, Rit—1}

7 return DTW, (z,X) = Rr,r

8 Function backward (z, X):
> Fill the soft alignment matrix E € RE*T

9 Eriire1=1 >E+ :=ORr,1/ORi
10 E:,T+l = EL+1,: =0

11 R.741 = Rp41,, = —00

12 forl=1L,...,1do

13 fort=T,...,1do

14 a=exp = (Riet1 — Rig — 6(21, Xe+41))

15 b= eXp%(Rl+1,t+1*Rl,t*(;(gl-&-hxwl))
16 Ei=a -E41+b Eip,041

17 return Vi x)DTW, (z,X) = E

In order to obtain the eligible segmentation result, we
need to enforce the constraint that a single time point should
not be aligned with multiple consecutive labels. To this
end, our forward recursion which computes DTW, (z, X)
does not consider the | relation in its recurrence; i.e., R; ;
depends on only R;—; ;-1 and R;;_1, excluding R;_1,
(Line 6 in Algorithm 2). Accordingly, the backward recur-
sion which computes V A(;,X)DTWW(E, X) also does not
allow the 1 relation; i.e., I} 4 is obtained from Ej; , and
Ej41,441, excluding 1 ; (Line 16 in Algorithm 2).

Note that the gradient of soft-DTW with respect to the
cost matrix, Vaz x)DTW, (2, X), can effectively update
the anomaly weight vector w as well as the model pa-
rameters of DiCNN O by the help of the gradient back-
propagation. This is possible because each entry of the
cost matrix [A(Z, X)];; = (21, %) is defined by the bi-
nary cross entropy between a pseudo-label z; and a local



anomaly score s; = o(w " hy),
0(z1,%x¢) = — {21 - log sy + (1 — 21) - log(1 — s¢)} .

In the end, the gradient optimizes each local anomaly score
to be closer to the pseudo-labels that are softly-aligned with
the time point.

Complexity Analysis. In terms of efficiency, we ana-
lyze that our framework additionally takes the computa-
tional cost of O(LT) for DTW alignment between z and
X (per CNN inference and its gradient back-propagation),
as described in Algorithm 2. Furthermore, because of 1)
the small L value (L < T'), 2) batch-wise computations in
the PyTorch framework, and 3) GPU parallel computations
for DTW recursions based on the numba library, it does not
raise any severe efficiency issue.

3. Reproducibility

For reproducibility, our implementation is publicly avail-
able', and Table 1 presents the optimization details of WE-
TAS. We empirically found that the performances are hardly
affected by these hyperparameters for the optimization.

Table 1: Details for the optimization of WETAS.

32 (for EMG, GHL, SMD)

Batch size 8 (for Subway)
Optimizer Adam optimizer
Initial learning rate  0.0001
Max # epochs 200

Stopping criterion

Instance-level F1 (on validation)

4. Hyperparaemter Search

For our WETAS framework, we search the optimal val-
ues of the following hyperparameters: the length of a se-
quential pseudo-label L € {4, 8, 12, 16}, the anomaly
threshold for pseudo-labeling 7 € {0.1, 0.3, 0.5, 0.7}, and
the margin size for the alignment loss 5 € {0.1, 0.5, 1.0,
2.0}. The optimal values are selected based on instance-
level Fl1-scores on the validation set. The selected hyperpa-
rameter values for reporting the final performance are listed
in Table 2. In case of the smoothing parameter  used for
soft-DTW, we fix its value to 0.1 without further tuning.

5. Baseline Methods

We describe the details of the anomaly detection meth-
ods which are used as the baseline in our experiments. All
of them employ their own deep neural networks to effec-
tively model the temporal dependency among time points,
and compute the anomaly score for each point or segment.

Uhttps://github.com/donalee/wetas

Table 2: Selected hyperparameter values for WETAS.

Datasets EMG GHL  SMD  Subway
global-pooling avg max max avg
L 4 16 12 12

T 0.3 0.1 0.5 0.5
B 0.1 1.0 0.5 0.5

e Donut [11]: A simple VAE model optimized by the
modified evidence lower bound (M-ELBO). It also
uses a sampling-based imputation technique for miss-
ing points, in order to effectively deal with anomalous
points during the detection.

e LSTM-VAE [8]: A VAE model that employs long
short term memory (LSTM) for its encoder and de-
coder. It is trained to reconstruct the non-anomalous
training data well, and defines the anomaly score by
the reconstruction error.

e LSTM-NDT [2]: A LSTM network that is trained to
predict the next input (i.e., sequence modeling). It ad-
ditionally adopts the non-parametric dynamic thresh-
olding (NDT) technique to automatically determine
the optimal anomaly threshold.

e OmniAnomaly [9]: The state-of-the-art point-level
anomaly detection model that uses gated recurrent
units (GRU) as the encoder and decoder of VAE. It
incorporates advanced techniques into VAE, includ-
ing normalizing flows and a linear Gaussian space
model, to consider stochasticity and temporal depen-
dency among the time points.

e DeepMIL [10]: The multiple-instance learning
method” that learns from weakly labeled temporal
data. It produces the anomaly prediction for each
fixed-length segment, thus the result can be used for
temporal anomaly segmentation. We consider differ-
ent numbers of the segments in a single instance, de-
noted by DeepMIL-4, 8, 16.

Note that Donut, LSTM-VAE, LSTM-NDT, and Omni-
Anomaly fall into the category of unsupervised learning as
they do not utilize any anomaly labels for training, and their
variants that use only normal instances are categorized as
semi-supervised learning. DeepMIL is the only existing
method that is based on weakly supervised learning.

6. Additional Experiments

Comparison with frame-level video anomaly detectors.
In case of the video dataset (i.e., Subway), we additionally
report the AUROC scores of unsupervised video anomaly

2The term “multiple-instance” used in MIL refers to same-length tem-
poral segments that compose a single bag. Thus, “instance” and “bag” in
MIL respectively correspond to “segment” and “instance” in our approach.



detection methods [3, 4, 6, 7] as a benchmark. They aim
to train the networks that take spatio-temporal (or spa-
tial) inputs to compute the anomaly score of each video
frame. Note that all these methods produce the frame-
level (or point-level) anomaly predictions, without utiliz-
ing the instance-level anomaly labels for training. In Ta-
ble 3, the weakly supervised methods® (i.e., DeepMIL
and WETAS) show better performance than the unsuper-
vised methods. Even though DeepMIL and WETAS sim-
ply use the pre-computed visual features of each frame (ex-
tracted by the pre-trained ResNet), it outperforms the other
domain-specific baseline methods (optimized in an end-to-
end manner) by the help of the instance-level anomaly la-
bels. This indicates that leveraging the weak supervision
can be more effective to discriminate normal and anoma-
lous video frames compared to fine-tuning the networks for
visual feature extraction.

Table 3: Comparison with several recent frame-level video
anomaly detection methods, Dataset: Subway.

Methods AUROC Methods AUROC
Tonescu et al. [3] 85.7% DeepMIL-4 [10]  95.7%
Ionescuetal. [4]  95.1% DeepMIL-8 [10]  96.9%

Liuetal. [6] 93.1% DeepMIL-16 [10]  96.4%

Pangetal. [7] 92.7% WETAS (ours) 97.8%

Learning curves. We plot the learning curves of WE-
TAS by using the EMG, GHL, SMD, and Subway datasets.
In Figure 1, as the number of epochs increases, the clas-
sification loss and alignment loss consistently decrease for
both the training and validation sets. This implies that WE-
TAS can infer more accurate sequential pseudo-labels as the
training progresses, and the alignment loss better guides
its model to output anomaly scores that are well aligned
with the pseudo-label. As illustrated in Figure 4 (in our
paper), the pseudo-labeling and the DTW-based segmenta-
tion collaboratively improve with each other. Consequently,
the instance-level and point-level F1-scores for the test set
increase as well. The results empirically show that the
instance-level F1-score (or the total loss) on the validation
set can be a good termination criterion for the optimization
of WETAS, thus we adopt it in our experiments.

Sensitivity Analyses. = We finally examine the perfor-
mance changes of WETAS with respect to the following
hyperparameters: the length of a sequential pseudo-label L,
the anomaly threshold for pseudo-labeling 7, and the mar-
gin size for the alignment loss 5. In Figure 2, we observe
that the final performance of WETAS is not sensitive to /3,

3To compute AUROC for the weakly supervised methods, we regard
the anomaly score of each segment as the score for all points in the segment
(for DeepMIL), and use the local (or point-level) anomaly scores without
the DTW-based segmentation (for WETAS).
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Figure 1: Learning curves of WETAS in terms of train-
ing/validation loss and test/validation F1-score, Datasets:
EMG, GHL, SMD, and Subway (from the first row).

and it shows higher F1-score when using a smaller 7 and a
larger L. Specifically,

e /3 does not much affect the final performance of WE-
TAS, because it simply controls the margin size in the
alignment loss.

e A smaller 7 encourages to find out more anomalous
segments, which leads to a high recall for anomaly
detection, by making the sequential pseudo-label have
more number of 1s.

e A larger L allows a finer-grained segmentation by
aligning the time points with more number of anomaly
pseudo-labels.

Nevertheless, unlike the DeepMIL, the granularity of
pseudo-labeling is not a critical factor for WETAS because
the DTW-based segmentation is capable of dynamically
aligning an input instance with its pseudo-label. In conclu-
sion, the best performing hyperparameter values success-
fully optimize WETAS under the weak supervision so that
it can identify variable-length anomalous segments.
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[11] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jia-
hao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan Pei, Yang
Feng, et al. Unsupervised anomaly detection via variational
auto-encoder for seasonal kpis in web applications. In WWW,
pages 187-196, 2018. 2

Figure 2: Fl-scores of WETAS with different hyperparam-
eter values, Dataset: GHL.
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