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Figure 1: Prediction layers for the KCVE task (left) and re-
jection (right) models, which accept the keypoint and image
embeddings from [3].

1. Architecture and Training Details
1.1. Keypoint-Conditioned Viewpoint Estimation

Architecture The Click-Here CNN (CH-CNN) architec-
ture consists of separate, mostly independent, branches to
process the image and keypoint. The features produced by
these branches are concatenated and passed through two lin-
ear layers to produce the desired output. As this architec-
ture has been proven capable of integrating keypoint and
image data, we use it not only for the task model, but also as
the backbone of the rejection model with the output layers
shown in Figure 1. Further information on the base archi-
tecture is available in the original work [3].

The output of the task model (Figure 1-left) is of size
3x3x360, consisting of three vehicle classes (car, bus, mo-
torbike), three angles (azimuth, elevation, tilt) and 360 po-
tential angle values. The output of the rejection model (Fig-
ure 1-right) is of size 34x(200+1), consisting of 34 poten-
tial keypoint classes, 200 binned outputs per keypoint class
to regress the additional error, and one output per keypoint
class to estimate the correctness.

Training The rejection model is trained in two phases. In
the first phase, it is trained on a combination of rendered [3]
and real [4] data. Candidate seeds are generated by ran-
domly selecting an x-y location on the image. An Adam
optimizer [2] is used with learning rate 1e−4 and early stop-
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Figure 2: Our rejection model architecture and output for-
mat for the HSC task. Each potential candidate seed is given
two outputs, which are multiplied to estimate the expected
additional error.

ping is performed on the validation loss with a patience of
5 epochs.

In the second phase, the rejection model is trained exclu-
sively on the PASCAL3D+ dataset [4]. The same optimizer
settings are used, however the one-hot additional error tar-
get is softened by convolving with a Gaussian kernel with
standard deviation 3. Early stopping is performed on vali-
dation loss with a patience of 100 epochs.

Regression and correctness ablations use the same train-
ing procedure, where back propagation is only performed
on the appropriate loss. For the no seed ablation, a tensor of
zeros is given to the rejection model in place of the keypoint
map, and no further modifications are made to architecture
or training.

1.2. Hierarchical Scene Classification

The architecture and output layers used for the hierar-
chical scene classification task are shown in Figure 2. As
a backbone, we use a ResNet-18 which has been pretrained
on ImageNet [1], and truncate the output to 2 elements per
seed class (14 total). Seven of these outputs—the correct-
ness outputs—are trained using a cross-entropy loss to de-
termine

p(sgs ̸= class|x) = 1− p(sgs = class|x) , (1)
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Figure 3: Quantitatively chosen KCVE heatmaps. The gold-standard seed is shown in green, the candidate seed is shown in
red, and a red-yellow-green heatmap gives the additional error for that keypoint click. Methods closer to the white “ideal”
star are better for that example. (A) The four cases where the gold-standard seed provided the worst absolute performance.
(B) The four cases where the candidate seed improved upon the gold-standard seed the most. (C) The four cases with the
highest additional error.

while the other seven are trained using a binary cross en-
tropy to find

E(AE |x, sgs ̸= class, sc = class) . (2)

The model is trained for 50 epochs with learning rate
1e−5 and the model with the best validation AMAE is
used for evaluation. The correctness-only rejection mod-
els, regression-only rejection models, and seeding models,
are trained identically using only the appropriate outputs,
except the learning rate is increased to 1e−4 and accuracy
is used in place of AMAE to select the best seeding model.

Since the individual outputs in this architecture corre-
spond to different seeds, the blind ablation was performed
by reducing the output to a single value that regresses the
additional error regardless of the input seed.

2. Quantitatively Chosen KCVE Examples
In the main text, we use qualitatively chosen examples

to illustrate characteristics of the task and rejection mod-
els. Here, we show additional examples that were selected
using quantitative criteria on our crowdsourced keypoints:
the four cases where the gold-standard seed resulted in the
highest geodesic error (Figure 3-A), the four cases where
the candidate seed improved upon the gold-standard seed
the most (Figure 3-B), and the four cases with the highest
additional error (Figure 3-C).

Figure 3-A shows four cases where the performance of
the candidate seed is poor but should be accepted, as we

would expect a worker to continue returning seeds that are
near the “target” gold-standard seed even though it won’t
result in better performance. We see that DAER outper-
forms baselines that do not have prior knowledge of the
gold-standard seed location in all four cases by accepting
these instances earlier.

In Figure 3-B, where the candidate seed improves upon
the gold-standard, the rejection model must understand
that despite returning a different answer than the gold-
standard, the candidate seed does not make performance
worse. Given the depth to which the rejection model must
be able to understand the task model to make this distinc-
tion, it is unsurprising that no method clearly outperforms
the others on these four samples.

Figure 3-C answers the most intuitive question of seed
rejection: how well does a rejection model reject seeds with
high additional error? We see that while using an oracle
measure of distance is best in some instances, DAER out-
performs all baselines that do not have prior knowledge of
the correct answer in all four cases by accepting these in-
stances last.

3. Crowdsourcing Keypoint Clicks
Keypoint annotations are collected from US-based an-

notators using the interface shown in Figure 4. The worker
is shown an image containing one or more vehicles, and is
asked to click all instances of a specific keypoint class. If an
annotator responded that the keypoint class wasn’t present,
we provided the query to another annotator up to two ad-



Figure 4: The interface provided to crowd workers for crowdsourcing keypoint clicks.

ditional times. If all three annotators responded that the
keypoint class wasn’t present, we assumed the gold stan-
dard was incorrect or too difficult, and removed it from the
evaluation.

To match the annotated keypoints with the correspond-
ing verified gold-standard keypoint from PASCAL3D+, we
use a three-step process: first, we associate all keypoints to
vehicle crops which contain them. Next, we match these
keypoints to the gold-standard keypoint of the same class in
that vehicle crop. Last, if a vehicle crop contains multiple
candidate keypoints of the same class, we select the one that
is nearest to the gold-standard keypoint. Using this process,
we receive annotations matching 6,042 of the 6,593 gold-
standard keypoints.

Analyzing the distribution of matched keypoints, we
found that 40% of keypoints were within 5 pixels of the
matching gold-standard and 57% were within 10 pixels of
the matched gold-standard keypoint. We further found that
6.3% (381) of keypoints cause additional error, while 1.3%
(81) cause more than 5◦ additional error, and 0.5% (30)
cause more than 150◦ additional error.

Percentile AMAE
70th 0.3472
80th 0.3092
90th 0.3303

Table 1: AMAE at various sampling percentiles.

4. Evaluation of Sampling Method by Per-
centile

For the KCVE task, we consider a sampling-based base-
line in which 10,000 samples are taken from the CH-CNN
output distribution, and the sample at the nth percentile dis-
tance from the mean is used as the scoring function. We

present the results for the 70th, 80th, and 90th percentile in
Table 1, justifying our choice of the 80th percentile as our
baseline.

5. Per-Fold KCVE Results

Table 2 shows the per-fold AMAE of the various re-
jection models on the KCVE task. We see that no single
method performs best across all folds, but DAER is the
most consistent: DAER does not perform worse than 25.3%
above its mean on any fold, while the corresponding num-
ber for the best baseline (sampling percentile) is 80.4%.

As each baseline only addresses one of the described
subgoals (e.g., distance only finds the cause of error and
sampler only understands model response), this suggests
that some folds contain more instances of one source of er-
ror, and again highlights the importance of the subgoals de-
scribed in the main paper. While focusing solely one sub-
goal allows baselines to perform well on folds where that
source of error is more frequent, DAER’s understanding of
both subgoals leads to more consistent and overall better
performance.

Fold
Method 1 2 3 4 5 Mean
Softmax Response 0.561 0.999 0.167 1.430 1.496 0.9306
Distance 0.419 0.254 0.147 0.757 0.405 0.3964
Entropy 0.325 0.556 0.112 0.421 0.353 0.3534
Sampler 0.292 0.558 0.125 0.370 0.201 0.3092
Correctness 0.312 0.343 0.118 0.414 0.282 0.2937
Regression 2.342 0.274 1.102 0.992 1.107 1.1633
No Seed 0.852 0.778 0.480 1.003 0.889 0.8002
DAER 0.322 0.307 0.109 0.335 0.359 0.2864

Table 2: Per-Fold AMAE on the KCVE task. Baselines are
above the thick line, ablations and DAER are below. The
best performer per-fold is shown in bold (lower is better).
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