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1. Derivation of color invariants

This section summarizes the derivation of the Kubelka-
Munk [3] based color invariants by Geusebroek et al. [2].

The Kubelka-Munk model for material reflections de-
scribes the spectrum of light F reflected from an object in
the viewing direction as

E(A%) = e(Ax) (1~ pr(x))*Roc (A ) + p(x)) (D)

where x denotes the spatial location on the image plane,
A the wavelength of the light, e the spectrum of the light
source, I, the material reflectivity and py the Fresnel re-
flectance coefficient. Partial derivatives of F with respect to
x and A are denoted by subscripts E, and E, respectively.
By exploring certain simplifying assumptions in Eq. (1)
we can derive representations that are invariant to one or
more of the following conditions: 1) scene geometry, i.e.
shadows and shading; 2) Fresnel reflections from shiny sur-
faces; 3) illumination intensity; and 4) illumination color.

1.1.E

F is a non-invariant baseline edge detector and therefore
no simplifying assumptions are made on Eq. (1). Color in-
variant F is simply defined as:

E=\JE3+ B}, + B}, + B} + B3, + B}, @

1.2.w

Assuming spectrally and spatially uniform illumination,
e(\, x) can be represented by a constant i. Moreover, as-
suming only matte surfaces, i.e. py(x) = 0, Eq. (1) reduces
to

E()\,x) = iRoo (A, x). 3)
The ratio W, = % is then independent of the illuminant ¢:

B, 1 9R(\X)
We = E Ry (\X) ox @
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The same holds for the ratios Wy, = EgT and Wiy, =
%, and consequently the invariant W can be defined as

W=\ [W2+ W3, + Wiy, + W2+ W3, +WRy,. )
W is invariant to illumination intensity.

13.C

We assume a spectrally uniform illuminant represented
as 7(x) and matte surfaces, i.e. ps(x) = 0. Eq. (1) then
reduces to

E(\x) =i(x)Roc (N, x). (6)
The ratio Cy = % is then independent of the illuminant 4:

_ By 1 OR o (N, x) o
“E T Ro(hx) ox

Cx

The same holds for the ratios Cyy = %, Che =
W and Cy\y, = w The color invari-
ant C' is defined as

C is invariant to scene geometry and illumination intensity.

14.N

We assume a colored illuminant where the power spec-
trum remains constant over the scene and only varies in in-
tensity, such that the illuminant can be decomposed into a
separate spectral and spatial term as e(A,x) = e(A)i(x).
Furthermore, we again assume matte surfaces, i.e. ps (x) =
0. Eq. (1) is then defined as

E(\x) =e(N)i(x)Roo (A, X). )
Differentiating Eq. (9) with respect to A yields

de(N\) o ORe(\,x)

E\ =i(x)Ro (N, x) o +e(N)i(x) o

. (10)



Dividing Eq. (10) by Eq. (9) results in a representation that
is invariant to the spatial illuminant term :

E, 1 0Oe(N) 1 ORx (A, x)

M=F = o "TRa0x on

. (1D

Additionally differentiating with respect to x results in the
left term dropping out, yielding the color invariant Ny,
which is only dependent on the material property Ro.:

O (B9 f 1 9RL(\x)
N“_ax{ E }_ax {Roo(/\,x) oA } (12)

Exe B — ENE,
T

The same holds for higher order derivatives, e.g.

ExxoE? — E\AE,E — 2E\,E\E + 2E}E,

13)

Nyxe = o8
(14)

The color invariant N is defined as
N =[N3, + N3\, + N3, +NE,,  (15)

and is invariant to scene geometry, illumination intensity
and illumination color.

1.5.H

We again assume an illuminant with uniform power
spectrum such that e(\, x) = (x). Eq. (1), including Fres-
nel reflections, then simplifies to

E(\x) = i(x) (1= ps(x))*Roo (X, %) + py(x))  (16)

The first and second order derivatives with respect to A are
defined as
. ORo (N, x
By = i(a) (- pg)? P2 )
2 azRoo ()\a X)

2 (18)

Ex =i(x) (1 - pr(x))
The ratio H = % then only depends on the material prop-
erty R and is thus an invariant to scene geometry, illumi-
nation intensity and Fresnel reflections. Since the spatial

derivative H, = 2 £ is ill-defined for Exy = 0, H is

instead defined as H = arctan FE)\A;’ for which the spatial
derivative is

1 Ex\Eye — ExExxz

H, = 5 5 (19)
E E
1+ (E_>:\>\> AN
_ ExyErxg — ExExyg 20)
E3 + E3,

Color invariant H is defined as

H=/H?+ H2. 1)

2. Distribution alignment by CIConv

Fig. 1 shows the feature map activations of a baseline
ResNet-18 model and each of the different color invariant
models, as described in section 4.1 of the paper. The inten-
sity change between the "Normal” (daytime) and “Darker”
(nighttime) test set causes a clear distribution shift through-
out all network layers of the baseline model. In contrast,
the CIConv layer produces a domain invariant feature rep-
resentation and consequently the distributions in the color
invariant networks are more aligned between the two do-
mains. This is the case for each of the color invariants, al-
though the "Normal” and ”"Darker” distributions in the final
layer appear to be most aligned for W, which may explain
its generally better performance compared to the other in-
variants.
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Figure 1: Histogram of ResNet-18 feature map activations
for ”Normal” (daytime) and “Darker” (nighttime) test sets
of synthetic dataset. Baseline network shows clear distri-
bution shift between test sets, which is greatly reduced in
color invariant networks.



Table 1: Feature map activation similarities of ResNet-18
feature maps for "Normal” and ”Darker” test sets of syn-
thetic dataset, measured by L2 distance. W has most con-
stant feature maps.

conv4 convs

Baseline  25.77 2.25 2.32 2.96 271
0.02 0.43 0.5 0.58 0.58
0.02 0.36 0.38 0.55 0.46
0.02 0.95 0.91 1.33 1.14
0.02 1.1 1.06 1.33 1.14
0.01 0.8 0.88 0.98 1.19

convl conv2 conv3

== Q=N

Table 2: Classification accuracy (%) on CODaN. Combin-
ing W with other input modalities does not improve perfor-
mance.

W+ None RGB E C N H

Day 8149 66.08 69.72 66.00 6648 68.56
Night 59.67 43.52 46.65 46.44 4519 47.65

To quantify the distribution shift we computed the L2
distance between the feature map activations for the "Nor-
mal” and “Darker” test sets. As shown in Table 1, W has
indeed the most constant feature map activations.

3. Combining color invariants

We investigated the use of multiple input modalities by
concatenating the output of W with either RGB, E, C, N
or H in the input layer. Results on the CODaN classifica-
tion dataset in Table 2 show that performance deteriorates
compared to only W (None), likely due to overfitting on a
combination of input modalities rather than using them in a
complementary fashion. This again shows the need for de-
veloping an adaptive fusion mechanism as mentioned in the
Discussion.

4. Semantic Segmentation per-class scores

The per-class Intersection-over-Union (IoU) scores of
the semantic segmentation experiment are shown in Table 3
for Nighttime Driving [1] and Table 4 for Dark Zurich [8].
Our W-RefineNet improves segmentation over the baseline
performance across nearly all classes.
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Table 3: Per-class semantic segmentation results on the Nighttime Driving [ 1] dataset, reported as IoU.

road
sidew.
build
wall
fence
pole
light
sign
veget.
terrain
sky
person
rider
car
truck
bus
train
motorc
bicycle
mloU

Method

Trained on source data

RefineNet [0] 83.2 329 82.0 18.6 0.0 35.5 22.5 39.4 45.8 0.0 29.0 53.0 0.0 57.7 0.0 67.7 63.1 0.0 16.5 34.1
W-RefineNet [ours] 89.6 52.7 82.7 16.2 0.0 39.6 52.2 60.6 43.9 0.0 38.6 55.1 24.3 72.0 0.0 73.2 66.8 0.0 23.6 41.6
RefineNet-AdaBN [4] 88.9 582 755 22.5 0.0 39.0 21.3 509 36.4 0.0 25.7 534 0.0 68.0 0.0 633 62.7 0.0 24.4 363

Table 4: Per-class semantic segmentation results on the Dark Zurich [7] dataset, reported as [oU. Results of methods trained
on source and target data taken from [&].

3 I3 = g g 2 =
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< =] = — V)] = > — 2] - ©

Method ¢ 2 2 £ & 2 02 2 ¢ 53 ¥ &8 B 8§ E B2 E B 2 FE

Trained on source data

RefineNet [6] 86.2 34.8 62.0 26.0 12.8 30.9 144 27.7 384 10.0 3.1 383 34.5 49.1 6.0 0.0 554 31.1 20.4 30.6

W-RefineNet [ours] 90.3 48.3 57.8 29.3 11.1 36.3 244 30.2 458 7.6 8.0 37.6 40.1 69.7 10.1 0.0 55.0 374 16.0 34.5
RefineNet-AdaBN [4] 87.0 51.8 53.1 28.4 14.7 32.8 11.3 31.9 33.8 184 24 324 39.6 59.7 10.5 0.0 32.9 342 20.0 31.3

Trained on source and target data

AdaptSegNet [9] 86.1 44.2 55.1 22.2 48 21.1 56 167 372 84 1.2 359 26.7 68.2 45.1 0.0 50.1 33.9 15.6 304

ADVENT [10] 85.8 37.9 55.5 27.7 145 23.1 14.0 21.1 32.1 87 2.0 399 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7
BDL [5] 853 41.1 619 32.7 174 20.6 114 213 294 89 1.1 374 22.1 632 282 0.0 47.7 39.4 15.7 30.8
DMAda [1] 75.5 29.1 48.6 21.3 14.3 343 36.8 299 494 13.8 04 433 50.2 69.4 18.4 0.0 27.6 349 11.9 32.1
GCMA [7] 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0

MGCDA [§] 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5




