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1. Derivation of color invariants
This section summarizes the derivation of the Kubelka-

Munk [3] based color invariants by Geusebroek et al. [2].
The Kubelka-Munk model for material reflections de-

scribes the spectrum of light E reflected from an object in
the viewing direction as

E(λ,x) = e(λ,x)
(
(1− ρf (x))

2R∞(λ,x) + ρf (x)
)

(1)

where x denotes the spatial location on the image plane,
λ the wavelength of the light, e the spectrum of the light
source, R∞ the material reflectivity and ρf the Fresnel re-
flectance coefficient. Partial derivatives ofE with respect to
x and λ are denoted by subscripts Ex and Eλ, respectively.

By exploring certain simplifying assumptions in Eq. (1)
we can derive representations that are invariant to one or
more of the following conditions: 1) scene geometry, i.e.
shadows and shading; 2) Fresnel reflections from shiny sur-
faces; 3) illumination intensity; and 4) illumination color.

1.1. E

E is a non-invariant baseline edge detector and therefore
no simplifying assumptions are made on Eq. (1). Color in-
variant E is simply defined as:

E =
√
E2
x + E2

λx + E2
λλx + E2

y + E2
λy + E2

λλy. (2)

1.2. W

Assuming spectrally and spatially uniform illumination,
e(λ,x) can be represented by a constant i. Moreover, as-
suming only matte surfaces, i.e. ρf (x) = 0, Eq. (1) reduces
to

E(λ,x) = iR∞(λ,x). (3)

The ratio Wx = Ex
E is then independent of the illuminant i:

Wx =
Ex
E

=
1

R∞(λ,x)

∂R∞(λ,x)

∂x
(4)

The same holds for the ratios Wλx = Eλx
E and Wλλx =

Eλλx
E , and consequently the invariant W can be defined as

W =
√
W 2
x +W 2

λx +W 2
λλx +W 2

y +W 2
λy +W 2

λλy. (5)

W is invariant to illumination intensity.

1.3. C

We assume a spectrally uniform illuminant represented
as i(x) and matte surfaces, i.e. ρf (x) = 0. Eq. (1) then
reduces to

E(λ,x) = i(x)R∞(λ,x). (6)

The ratio Cλ = Eλ
E is then independent of the illuminant i:

Cλ =
Eλ
E

=
1

R∞(λ,x)

∂R∞(λ,x)

∂λ
. (7)

The same holds for the ratios Cλλ = Eλλ
E , Cλx =

EλxE−EλEx
E2 and Cλλx = EλλxE−EλλEx

E2 . The color invari-
ant C is defined as

C =
√
C2
λx + C2

λλx + C2
λy + C2

λλy. (8)

C is invariant to scene geometry and illumination intensity.

1.4. N

We assume a colored illuminant where the power spec-
trum remains constant over the scene and only varies in in-
tensity, such that the illuminant can be decomposed into a
separate spectral and spatial term as e(λ,x) = e(λ)i(x).
Furthermore, we again assume matte surfaces, i.e. ρf (x) =
0. Eq. (1) is then defined as

E(λ,x) = e(λ)i(x)R∞(λ,x). (9)

Differentiating Eq. (9) with respect to λ yields

Eλ = i(x)R∞(λ,x)
∂e(λ)

∂λ
+ e(λ)i(x)

∂R∞(λ,x)

∂λ
. (10)
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Dividing Eq. (10) by Eq. (9) results in a representation that
is invariant to the spatial illuminant term i:

Nλ =
Eλ
E

=
1

e(λ)

∂e(λ)

∂λ
+

1

R∞(λ,x)

∂R∞(λ,x)

∂λ
. (11)

Additionally differentiating with respect to x results in the
left term dropping out, yielding the color invariant Nλx
which is only dependent on the material property R∞:

Nλx=
∂

∂x

{
Eλ
E

}
=
∂

∂x

{
1

R∞(λ,x)

∂R∞(λ,x)

∂λ

}
, (12)

=
EλxE − EλEx

E2
. (13)

The same holds for higher order derivatives, e.g.

Nλλx =
EλλxE

2 − EλλExE − 2EλxEλE + 2E2
λEx

E3
.

(14)

The color invariant N is defined as

N =
√
N2
λx +N2

λλx +N2
λy +N2

λλy (15)

and is invariant to scene geometry, illumination intensity
and illumination color.

1.5. H

We again assume an illuminant with uniform power
spectrum such that e(λ,x) = i(x). Eq. (1), including Fres-
nel reflections, then simplifies to

E(λ,x) = i(x)
(
(1− ρf (x))

2R∞(λ,x) + ρf (x)
)

(16)

The first and second order derivatives with respect to λ are
defined as

Eλ = i(x) (1− ρf (x))
2 ∂R∞(λ,x)

∂λ
, (17)

Eλλ = i(x) (1− ρf (x))
2 ∂

2R∞(λ,x)

∂λ2
. (18)

The ratioH = Eλ
Eλλ

then only depends on the material prop-
erty R∞ and is thus an invariant to scene geometry, illumi-
nation intensity and Fresnel reflections. Since the spatial
derivative Hx = ∂

∂x
Eλ
Eλλ

is ill-defined for Eλλ = 0, H is
instead defined as H = arctan Eλ

Eλλ
, for which the spatial

derivative is

Hx =
1

1 +
(
Eλ
Eλλ

)2 EλλEλx − EλEλλx
E2
λλ

(19)

=
EλλEλx − EλEλλx

E2
λ + E2

λλ

. (20)

Color invariant H is defined as

H =
√
H2
x +H2

y . (21)

2. Distribution alignment by CIConv

Fig. 1 shows the feature map activations of a baseline
ResNet-18 model and each of the different color invariant
models, as described in section 4.1 of the paper. The inten-
sity change between the ”Normal” (daytime) and ”Darker”
(nighttime) test set causes a clear distribution shift through-
out all network layers of the baseline model. In contrast,
the CIConv layer produces a domain invariant feature rep-
resentation and consequently the distributions in the color
invariant networks are more aligned between the two do-
mains. This is the case for each of the color invariants, al-
though the ”Normal” and ”Darker” distributions in the final
layer appear to be most aligned for W , which may explain
its generally better performance compared to the other in-
variants.
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Figure 1: Histogram of ResNet-18 feature map activations
for ”Normal” (daytime) and ”Darker” (nighttime) test sets
of synthetic dataset. Baseline network shows clear distri-
bution shift between test sets, which is greatly reduced in
color invariant networks.



Table 1: Feature map activation similarities of ResNet-18
feature maps for ”Normal” and ”Darker” test sets of syn-
thetic dataset, measured by L2 distance. W has most con-
stant feature maps.

conv1 conv2 conv3 conv4 conv5

Baseline 25.77 2.25 2.32 2.96 2.71
E 0.02 0.43 0.5 0.58 0.58
W 0.02 0.36 0.38 0.55 0.46
C 0.02 0.95 0.91 1.33 1.14
N 0.02 1.1 1.06 1.33 1.14
H 0.01 0.8 0.88 0.98 1.19

Table 2: Classification accuracy (%) on CODaN. Combin-
ing W with other input modalities does not improve perfor-
mance.

W+ None RGB E C N H

Day 81.49 66.08 69.72 66.00 66.48 68.56
Night 59.67 43.52 46.65 46.44 45.19 47.65

To quantify the distribution shift we computed the L2
distance between the feature map activations for the ”Nor-
mal” and ”Darker” test sets. As shown in Table 1, W has
indeed the most constant feature map activations.

3. Combining color invariants
We investigated the use of multiple input modalities by

concatenating the output of W with either RGB, E, C, N
or H in the input layer. Results on the CODaN classifica-
tion dataset in Table 2 show that performance deteriorates
compared to only W (None), likely due to overfitting on a
combination of input modalities rather than using them in a
complementary fashion. This again shows the need for de-
veloping an adaptive fusion mechanism as mentioned in the
Discussion.

4. Semantic Segmentation per-class scores
The per-class Intersection-over-Union (IoU) scores of

the semantic segmentation experiment are shown in Table 3
for Nighttime Driving [1] and Table 4 for Dark Zurich [8].
Our W -RefineNet improves segmentation over the baseline
performance across nearly all classes.
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Table 3: Per-class semantic segmentation results on the Nighttime Driving [1] dataset, reported as IoU.
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Trained on source data

RefineNet [6] 83.2 32.9 82.0 18.6 0.0 35.5 22.5 39.4 45.8 0.0 29.0 53.0 0.0 57.7 0.0 67.7 63.1 0.0 16.5 34.1
W -RefineNet [ours] 89.6 52.7 82.7 16.2 0.0 39.6 52.2 60.6 43.9 0.0 38.6 55.1 24.3 72.0 0.0 73.2 66.8 0.0 23.6 41.6
RefineNet-AdaBN [4] 88.9 58.2 75.5 22.5 0.0 39.0 21.3 50.9 36.4 0.0 25.7 53.4 0.0 68.0 0.0 63.3 62.7 0.0 24.4 36.3

Table 4: Per-class semantic segmentation results on the Dark Zurich [7] dataset, reported as IoU. Results of methods trained
on source and target data taken from [8].
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Trained on source data

RefineNet [6] 86.2 34.8 62.0 26.0 12.8 30.9 14.4 27.7 38.4 10.0 3.1 38.3 34.5 49.1 6.0 0.0 55.4 31.1 20.4 30.6
W -RefineNet [ours] 90.3 48.3 57.8 29.3 11.1 36.3 24.4 30.2 45.8 7.6 8.0 37.6 40.1 69.7 10.1 0.0 55.0 37.4 16.0 34.5
RefineNet-AdaBN [4] 87.0 51.8 53.1 28.4 14.7 32.8 11.3 31.9 33.8 18.4 2.4 32.4 39.6 59.7 10.5 0.0 32.9 34.2 20.0 31.3

Trained on source and target data

AdaptSegNet [9] 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4
ADVENT [10] 85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7
BDL [5] 85.3 41.1 61.9 32.7 17.4 20.6 11.4 21.3 29.4 8.9 1.1 37.4 22.1 63.2 28.2 0.0 47.7 39.4 15.7 30.8
DMAda [1] 75.5 29.1 48.6 21.3 14.3 34.3 36.8 29.9 49.4 13.8 0.4 43.3 50.2 69.4 18.4 0.0 27.6 34.9 11.9 32.1
GCMA [7] 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0
MGCDA [8] 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5


