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Appendix

A: Proofs for the Theorems in subsection 4.2

We use all notions defined in subsection 4.2
Theorem 1. Let f : X −→ Rm be an embedding, which minimizes EOtrip(f), then f has the
class-collapsing property with respect to all classes.

Proof. Define a new random variables such that for every 1 ≤ r1, r2 ≤ t:

hr1,r2(Y, Z) =

{
1 Y = r1 ∧ Z = r2
0 else

observe that

δ̄Y1,Y2
· (1− δ̄Y1,Y3

) =
∑

1≤r1,r2≤t
r16=r2

1Y1=r1 · hr1,r2(Y2, Y3) =
∑

1≤r1,r2≤t
r16=r2

1Y1=r2 · hr1,r2(Y3, Y2)

Since the variables are independent

E(δ̄Y1,Y2 ·(1−δ̄Y1,Y3)) =
1

2
·
∑

1≤r1,r2≤t
r16=r2

E(1Y1=r1)·E(hr1,r2(Y2, Y3))+E(1Y1=r2)·E(hr1,r2(Y3, Y2)).

Define: D̄(x1, x2, x3) := (Dx1,x2
−Dx1,x3

+ α)+

Rearranging the terms we get

n3 · EOtrip(f) =
∑

x1,x2,x3∈X
(E(δ̄Y1,Y2 · (1− δ̄Y1,Y3)) · D̄(x1, x2, x3) =

∑
x1,x2,x3∈X
1≤r1 6=r2≤t

(E(1Y1=r1) · E(hr1,r2((Y2, Y3)) + E(1Y1=r2) · E(hr1,r2(Y3, Y2))) · D̄(x1, x2, x3) =

∑
x1,x2,x3∈X
1≤r1 6=r2≤t

E(hr1,,r2(Y2, Y3)) ·
(
E(1Y1=r1) · D̄(x1, x2, x3) + E(1Y1=r2) · D̄(x1, x3, x2)

)
=

Therefore, if

K(i, j, k, r1, r2) =
(
E(1Y1=r1) · D̄(xi, xj , xk) + E(1Y1=r2) · D̄(x1, xk, xj)

)
,

then EOtrip(f) can be written as

EOtrip(f) =
1

n3

∑
1≤i,j,k≤n
1≤r1 6=r2≤t

E(hr1,r2(Yj , Yk)) ·K(i, j, k, r1, r2)



For every xi ∈ X , define:

(EOtrip(f))xi =
1

n2
·

∑
1≤j,k≤n

1≤r1 6=r2≤t

(E(hr1,r2(Yj , Yk)) ·K(xi, xj , xk, r1, r2)

Let f : X −→ Rm be an embedding, fix 1 ≤ r ≤ t and xi ∈ Ar, xj , xk ∈ X with

‖ f(xi)− f(xj)‖ = w, ‖ f(xi)− f(xk)‖ = h.

By definition:

K(i, j, k, r1, r2) =


p · (h− w + α)+ + q(w − h+ α)+ r1 = r ∧ r2 6= r

q · (h− w + α)+ + p(w − h+ α)+ r2 = r ∧ r1 6= r

p · (h− w + α)+ + p(w − h+ α)+ r1 = r ∧ r2 = r

q · (h− w + α)+ + q(w − h+ α)+ r1 6= r ∧ r2 6= r

Since 0.5 < p < 1, in order to get minimal K(i, j, k, r1, r2) value, h and w must satisfy |h−w| ≤ α.
In this case we have

K(i, j, k, r1, r2) =


(p+ q) · α+ (h− w)(p− q) r1 = r ∧ r2 6= r

(p+ q) · α+ (w − h)(p− q) r2 = r ∧ r1 6= r

2 · α r1 = r ∧ r2 = r

2 · α r1 6= r ∧ r2 6= r

Therefore,∑
r2∈{1,.r−1,r+1,.t}

(E(hr,r2(Yj , Yk)) ·K(xi, xj , xk, r1, r2) + (E(hr2,r(Yj , Yk)) ·K(xi, xj , xk, r1, r2) =

= (p+ q) · α(
∑

r2∈{1,.r−1,r+1,.t}

(E(hr,r2(Yj , Yk) + (E(hr2,r(Yj , Yk)))+

(h− w)(p− q))(
∑

r2∈{1,.r−1,r+1,.t}

E(hr,r2(Yj , Yk))− E(hr2,r(Yj , Yk))

We split to three cases:

1. If xj , xk ∈ Ar or xj , xk /∈ Ar then: E(hr,r2(Yj , Yk)) = E(hr2,r(Yj , Yk)). Hence,

(h− w)(p− q))(
∑

r2∈{1,.r−1,r+1,.t}

E(hr,r2(Yj , Yk))− E(hr2,r(Yj , Yk)) = 0

2. If xj ∈ Ar and xk /∈ Ar, then E(hr,r2(Yj , Yk)) > E(hr2,r(Yj , Yk)), therefore

(h− w)(p− q))(
∑

r2∈{1,.r−1,r+1,.t}

E(hr,r2(Yj , Yk))− E(hr2,r(Yj , Yk))

Since p > 0.5 and |h− w| ≤ α,the minimal value is achieved whenever h = 0 and w = α.

3. In the same way if xk ∈ Ar and xj /∈ Ar, then E(hhr2,r
(Yj , Yk)) = E(hr,r2(Yj , Yk)) and

the minimal value is achieved whenever h = α and w = 0.

In conclusion, if xi ∈ Ar, an embedding f∗ satisfies

(EOtrip(f∗))xi
= min{(EOtrip(f))xi

|f : X −→ Rm}

iff f∗(xj) = f∗(xi) for every xj ∈ Ar, and ‖ f∗(xj)− f∗(xi)‖ = α for every xj /∈ Ar.

We will now prove the same theorem with respect to the margin loss.
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Theorem 2. Let f : X −→ Rm be an embedding, which minimizes

EOmargin(f, β) =
1

n2

∑
xi,xj∈X

ELfmargin(xi, xj),

then f has the class-collapsing property with respect to all classes.

Proof. Observe that if xi, xj ∈ Ar, then

ELfmargin(xi, xj) = p · (Dxi,xj
− βxi

+ α)+ + (1− p) · (βxi
−Dxi,xj

+ α)+

Since 0 < p < 1, then the maximal value is achieved whenever |Dxi,xj
− βxi

| ≤ α, in this case:

ELfmargin(xi, xj) = (2p− 1) · (Dxi,xj − βxi).

In the same way in case xi ∈ Ar and xj /∈ Ar then:

ELfmargin(xi, xj) = (2p− 1) · (βxi −Dxi,xj ).

Combining both directions we get:

∑
xj∈X

ELfmargin(xi, xj) = (2p− 1) ·

∑
Yj∈A

Dxi,xj
−
∑
Yj /∈A

Dxi,xj


Since: p > 0.5 and |Dxi,xj

− βxi
| ≤ α, the minimal value is achieved whenever Dxi,xj

= 0,
Dxi,xk

= 2α and βxi = α, for every xi, xj ∈ Ar, xk /∈ Ar.

B: Easy Positive Sampling in noisy environment

In this subsection we analyse the EPS method from the theoretical prospective, using the framework
defined in Section 4. We use the same notions as in sections 3 and 4.

Define: Φ(yi, yj) =

{
1 yi = yj ∧Dxi,xj = min{Dxi,xk

| yk = yi}
0 else

. Then, the easy positive

sampling loss can be defined by:

1

n

∑
1≤i,j,k≤n

Φ(yi, yj) · Lftrip(xi, xj , xk)

for the triplet loss and

1

n

∑
1≤i,j≤n

(Φ(yi, yj) · Lf,βmargin(xi, xj)) + 1yi 6=yjL
f,β
margin(xi, xj)

for the margin loss.

In the noisy environment stochastic case, using section 4 notions, Φ becomes a random variable:

Φ̄(Yi, Yj) =

{
1 Yi = Yj ∧ ∀t ((Dxi,,xt < Dxi,xj )→ Yt 6= Yi)

0 else

Therefore, the triplet loss with EPS in the noisy environment case, becomes:

ELfEPStrip(xi, xj , xk) = E
(
Φ̄(Yi, Yj) · δ̄Yi,Yj

· (1− δ̄Yi,Yk
)
)
·
(
Df
xi,xj

−Df
xi,xk

+ α
)
+

and for the margin loss with EPS we have:

ELfEPSmargin(xi, xj) = E(Φ̄(Yi, Yj)·δ̄Yi,Yj
)·(Df

xi,xj
−βxi

+α)++E(1−δ̄Yi,Yj
)·(βxi

−Df
xi,xj

+α)+

As in section 4.2 we assume that Y = {Y1, .., Yn} is a set of independent binary random variables.
Let A1, .., At ⊂ X , 0.5 < p < 1 such that: |Aj | = n

t and

P(Yi = k) =

{
p xi ∈ Ak
q′ := 1−p

t−1 xi /∈ Ak
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For simplicity we assume that every 1 ≤ i ≤ n
t satisfies xn·i

t +1, .., xn·i
t +t ∈ Ai

We prove first that the minimal embedding with respect to both losses does not satisfy the class
collapsing property. Let f1 be an embedding function such that:

Df1
xi,xj

=

{
0 (∃r)(xi, xj ∈ Ar)
α else

and f2 an embedding such that:

Df1
x1,x2

=

{
0 (∃r)(xi, xj ∈ Ar)∧ ∼ ((i < t

2n ∧ j >
t
2n ) ∨ (i > t

2n ∧ j <
t
2n )

α else

f1 represent the case of class collapsing, where f2 represent the case where there are two modalities
for the first class. In order to show that the minimal embedding does not satisfy the class collapsing
property it suffices to prove that

1

n

∑
1≤i,j,k≤n

ELf2EPStrip(xi, xj , xk) <
1

n

∑
1≤i,j,k≤n

ELf1EPStrip(xi, xj , xk)

and
1

n

∑
1≤i,j≤n

ELf2EPSmargin(xi, xj) <
1

n

∑
1≤i,j≤n

ELf1EPSmargin(xi, xj).

Remark: For both losses the definition requires a strict order between the elements, therefore by
distance zero, we meant infinitesimal close, the order between the elements inside the sub-clusters is
random, and element between set A1 are closer then set Ac1 in both embeddings. For simplification
we neglect this infinitesimal constants in the proofs.

Claim 1. There exists M such that if n ≥M , then:

1

n

∑
1≤i,j,k≤n

ELf2EPStrip(xi, xj , xk) <
1

n

∑
1≤i,j,k≤n

ELf1EPStrip(xi, xj , xk)

Proof. Fix x1, WOLOG we may assume in both embeddings that Dfj
x1,xi < D

fj
x1,xk for every

j ∈ {1, 2} and 1 ≤ i < k ≤ n. It suffices to prove that

1

n

∑
1≤j,k≤n

(ELf1EPStrip(x1, xj , xk)− ELf2EPStrip(x1, xj , xk)) > 0

Let q = (1− p), observe that

P(
∧

1≤t<j

Yi 6= Yt) = pm+1 · qj−2−m + pj−2−mqj+1 ≤ 2pj−1

where m = |{t | t ≤ j, Yt ∈ A1}| . Thus if j ≥ n
2t , we have

ELf2EPStrip(x1, xj , xk) ≤ P(
∧

1≤t<j

Yi 6= Yt) · 2 · α ≤ 4 · αpj−1.

Therefore,

1

n

∑
j> n

2t ,1≤k≤n

ELf2EPStrip(x1, xj , xk) ≤
∑
j> n

2t

4·αpj = 4·n·αp n
2t ·

n(2t−1)
2t∑
j=0

pj = 4·αp n
2t ·1− q

n(2t−1)/2t

1− q
n→∞→ 0

For j ≤ n
2t and k ≤ n

2t of k > n
t , we have ELf1EPStrip(x1, xj , xk) = ELf2EPStrip(x1, xj , xk).

Hence, the only case left is j ≤ n
2t and n

2t < k ≤ n
t . In this case: ELf2EPStrip(x1, xj , xk) = 0, where

ELf1EPStrip(x1, xj , xk) = (p2 · qj−1 + q2 · pj−1) · α ≥ qj+1α
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and we get:

1

n
·

∑
j≤ n

2t ,
n
2t≤k≤

n
t

ELf1EPStrip(x1, xj , xk)− ELf2EPStrip(x1, xj , xk) ≥

α · q2 ·
n
2t∑
j=0

qi = α · q2 · 1− qn/2t

1− q
n→∞→ αq2 · 1

1− q

Choosing M such that

α · q2 · 1− qM/2t

1− q
> 4 · αpM

4 · 1− qM(2t−1)/2t

1− q

will satisfy that for every n > M :

1

n

∑
1≤i,j,k≤n

ELf2EPStrip(xi, xj , xk) <
1

n

∑
1≤i,j,k≤n

ELf1EPStrip(xi, xj , xk)

Claim 2. There exists M such that if n ≥M then:

1

n

∑
1≤i,j≤n

ELf2EPSmargin(xi, xj) <
1

n

∑
1≤i,j≤n

ELf1EPSmargin(xi, xj)

Proof. For every 1 ≤ j ≤ n
2t or nt < j ≤ n we have:

ELf1EPSmargin(xi, xj) = ELf1EPSmargin(xi, xj)

For n
2t < j ≤ n

2 :

ELf2EPSmargin(xi, xj) = 2 · p · q · βxi
+ (p2qj−2 + q2pj−2) · (2 · α− βxi

)

while:

ELf2EPSmargin(xi, xj) = 2 · p · q · (βxi
+ α) + (p2qj−2 + q2pj−2) · (α− βxi

)

Since j > n
2t the second therm tend to zero. Therefore, taking M such that

2qp > (p2q
M
2t−2 + q2p

M
2t−2)

will satisfy that for each n ≥M

1

n

∑
1≤i,j≤n

ELf2EPSmargin(xi, xj) <
1

n

∑
1≤i,j≤n

ELf1EPSmargin(xi, xj)

In the previous two claims we prove that the class collapsing solution is not minimal with respect
to both the EPSmargin and the EPStriplet. In the following claims we prove that not only it is
not the minimal solution, looking locally on the direct effect of the EPS losses on a sample which
is not one of the closest elements to to the anchor. We prove that the optimal solution in this case
is an embedding in which the distance between the sample to the anchor is equal to the margin
hyperparameter.

Claim 3. Let f be an embedding. For every i, let i1, .., in be such that Df
xi,xi1

< Df
xi,xi2

<

... < Df
xi,xn

, Then there exists M such that for every j > M the minimal embedding for
ELfEPSmargin(xi, xj) is achived whenever Df

xi,xj
= βxi

+ α.
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Proof. Fix x1, as in the previous claims we will assume:

Df
x1,x1

< Df
x1,x2

< ... < Df
x1,xn

As was prove in in Claim 1 P(
∧

1≤t<j Yi 6= Yt) ≤ 4pj , thus

E(Φ̄(Yi, Yj) · δ̄Yi,Yj ) ≤ P(
∧

1≤t<j

Yi 6= Yt) ≤ 4pj−1
j→∞→ 0

Since the minimal solution for

E(Φ̄(Yi, Yj) · δ̄Yi,Yj ) · (Df
xi,xj

− βxi + α)+ + E(1− δ̄Yi,Yj ) · (βxi −Df
xi,xj

+ α)+

satisfies |βxi −Df
xi,xj
| ≤ α, we have:

ELf1EPSmargin(x1, xj) = α · (E(Φ̄(Y1, Yj) · δ̄Y1,Yj
) + E(1− δ̄Y1,Yj

))+

(Df
x1,xj

− βx1
) · (E(Φ̄(Y1, Yj) · δ̄Y1,Yj

)− E(1− δ̄Yi,Yj
))

Since E(1− δ̄Y1,Yj ) ≥ 2pq, there exists M such every j > M satisfies

(E(Φ̄(Y1, Yj) · δ̄Y1,Yj )− E(1− δ̄Yi,Yj )) < 0

Therefore the minimal value is achieved whenever Df
x1,xj

= α+ βx1
.

The proof in the EPStriplet loss case is similar.

Claim 4. Let f be an embedding. For every i, let i1, , .., in be such that Df
xi,xi2

< ... < Df
xi,xn

.
Then there exists M such that for every j > M the minimal embedding for:

ELfEPStrip(xi, xt, xt+j) + ELfEPStrip(xi, xt+j , xt)

is achieved whenever Dxi,xt+j
= Dxi,xt

+ α.

Proof. DefineK(Yi, Yi, Yk) := E
(
Φ̄(Yi, Yj) · δ̄Yi,Yj

· (1− δ̄Yi,Yk
)
)
. Fixing x1, assumingDf

x1,x1
<

Df
x1,x2

< ... < Df
x1,xn

, We have:

ELfEPStrip(x1, xt, xt+j) + ELfEPStrip(x1, xt+j , xt) = K(Y1, Yt, Yt+j) ·
(
Df
x1,xt

−Df
x1,xt+j

+ α
)
+

+K(Y1, Yt+j , Yt) ·
(
Df
x1,xt+j

−Df
x1,t + α

)
+

As in the previous claim, the minimal value is achieved whenever |Df
x1,xt+j

−Df
x1,xt
| ≤ α in this

case:

ELfEPStrip(x1, xt, xt+j) + ELfEPStrip(x1, xt+j , xt) = α · (K(Y1, Yt, Yt+j) +K(Y1, Yt+j , Yt))Yt))+

(Df
x1,xt

−Df
x1,xt+j

) · (K(Y1, Yt, Yt+j)−K(Y1, Yt+j , Yt))

On the one hand: K(Y1, Yt, Yt+j) = (
∏
i∈{1,2,..,t,t+j} p

tiq1−ti) + (
∏
i∈{1,2,..,t,t+j} p

1−tiqti) ≥

qt+1 where tk =

{
1 Yk /∈ A
0 else

for k ∈ {2, .., t − 1, t + j} and tk =

{
1 Yk ∈ A
0 else

for k ∈ {1, t}.

On the other hand K(Y1Yt+j , Yt) ≥ Prob(
∧

1≤k<t+j Y1 6= Yk) ≤ 4pt+j−1. Taking j large enough
such that qt+1 ≤ 4pt+j−1, we have:

(E
(
Φ̄(Y1, Yt) · δ̄Y1,Yt

· (1− δ̄Y1,Yt+j
)
)
− E

(
Φ̄(Y1, Yt+j) · δ̄Y1,Yt+j

· (1− δ̄Y1,Yt
)
)
) > 0

therefore in such case the minimum is archived whenever Df
x1,xt+j

= Df
x1,xt

+ α.
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dataset model Without EPS With EPS
std std

cars196 Margin 0.17 0.27
cars196 MS 0.24 0.29
cars196 Trip+SH 0.20 0.47
cub200 Margin 29.8 0.33
cub200 MS 0.43 0.36
cub200 Trip+SH 0.52 0.35
Omniglot-letters Margin 0.73 0.58
Omniglot-letters MS 0.52 0.71
Omniglot-letters Trip+SH 0.34 0.61

Table 1: Std of Recall@1 results. Each model was trained 8 times with different random seeds.

Cars196 CUB200
MS MS+EPS MS MS+EPS

R@1 84.1 85.5 65.7 66.7
R@2 90.4 90.7 77.0 77.2
R@4 94.0 94.3 86.3 86.4
R@8 96.5 96.7 91.2 90.9

Table 2: Results of Multi-similarity loss with Embedding size 512 (as in [4]). Using EPS improve
results in both cases.

C: More experiments and implementation details

MNIST architecture details

For the MNIST even/odd experiment we use a model consisting of two consecutive convolutions
layer with (3,3) kernels and 32,64 (respectively) filter sizes. The two layers are followed by Relu
activation and batch normalization layer, then there is a (2,2) max-pooling follows by 2 dense layers
with 128 and 2 neurons respectively.

Stability analysis

Following [2, 1], it was important to us to have a fair comparison between all tested models.
Therefore, for all the experiments we use the same framework as in [3], with the same architecture
and embedding size (128). We also did not change the default hyper-parameters in all tested methods.
We run each experiment 8 times with different random seeds, the reported results are the mean of all
the experiments. The std of the Recall@1 results of all experiments can be seen in Table 1. In all
cases the differences between the results with and without the EPS are significance.

Multi-similarity comparison

From our experiments, the Multi-similarity loss is highly affected by the batch size. Using Resnet50
backbone, we restrict the number of batch size to 160 for all tested model, which cause to the inferior
results of the multi-similarity loss comparing to other methods. For the sake of completeness we
provide the results also on inception backbone with embedding size of 512 as in [4], and batch size
of 260. As can be seen in Table 2, also in these cases the results improve when using EPS instead of
semi-hard sampling on the positive samples.
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