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1. Visualization of ambiguities
As claimed, there are 4 (sign ambiguities) × 6 (order ambiguities) = 24 ambiguities when PCA is used for retrieving

the canonical pose of a given point cloud. In this supplementary material, we present a detailed visualization of the 24
ambiguities of the PCA-based canonical poses as well as the 4 and 6 counterparts obtained with order-disambiguation and
sign-disambiguation, respectively. The results are presented in Fig. 1.
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Figure 1: Visualization of the 24 ambiguities of the PCA-based canonical poses of a chair. The top row and left column
respectively consist of the 6 order ambiguities and 4 sign ambiguities as mentioned in Section 6.2 of the main paper.



Pre-aligned pose
Data augmentation

with random rotations
Disambiguation with

Strategy III
All possible

canonical poses
PointNet [5] 88.5 70.5 82.8 86.7

PointConv [9] 92.4 85.6 86.7 89.1
DGCNN [8] 92.9 81.1 87.2 91.6

Table 1: Classification accuracy (%) w.r.t. distinct networks. Strategy III stands for the disambiguation method described in
Section 6.2 of the main paper, with which all the ambiguities are eliminated.

Method Overall mIoU aero bag cap car cha. earph. guit. knif. lam. lap. mot. mug pist. rock. ska. tab.
PointNet [5] 74.4 81.6 68.7 74.0 70.3 87.6 68.5 88.9 80.0 74.9 83.6 56.5 77.6 75.2 53.9 69.4 79.9

PointNet++ [6] 76.7 79.5 71.6 87.787.787.7 70.7 88.8 64.9 88.8 78.1 79.2 94.994.994.9 54.3 92.0 76.4 50.3 68.4 81.0
PointCNN [4] 71.4 78.0 80.1 78.2 68.2 81.2 70.2 82.0 70.6 68.9 80.8 48.6 77.3 63.2 50.6 63.2 82.082.082.0
DGCNN [8] 73.3 77.7 71.8 77.7 55.2 87.3 68.7 88.7 85.5 81.8 81.3 36.2 86.0 77.377.377.3 51.6 65.3 80.2
RIConv [11] 75.5 80.6 80.2 70.7 68.8 86.8 70.4 87.2 84.3 78.0 80.1 57.3 91.2 71.3 52.1 66.6 78.5
Li et al. [3] 82.5 81.4 84.584.584.5 85.1 75.0 88.2 72.4 90.790.790.7 84.4 80.3 84.0 68.868.868.8 92.692.692.6 76.1 52.1 74.1 80.0

LGR-Net [12] 82.8 81.7 78.1 82.5 75.175.175.1 87.6 74.574.574.5 89.4 86.1 83.083.083.0 86.4 65.3 92.692.692.6 75.2 64.164.164.1 79.879.879.8 80.5
Ours (w/o TTA) 81.7 81.9 58.2 77.0 71.8 89.6 64.2 89.1 85.9 80.7 84.7 46.8 89.1 73.2 45.6 66.5 81.0
Ours (w/ TTA) 83.183.183.1 83.783.783.7 62.9 79.1 73.4 90.190.190.1 64.2 90.3 86.486.486.4 82.5 87.3 46.5 89.1 75.4 46.1 66.6 81.3

Table 2: Per-class mIoU (%) of the SO(3)/SO(3) setup. RI-GCN [2], Triangle-Net [10] and SRI-Net [7] are omitted since the
per-class mIoUs are not reported in their respective paper.

2. Additional experiments
In this section, we conduct more experiments to test how different network designs could affect the performance when the

PCA-based canonical poses are used as the inputs. The elapsed time of the proposed pose selector module and the per-category
mIoU on the ShapeNet part segmentation task are also reported.

2.1. Effect of different backbone networks

We carry out experiments to study how different network structures can affect performance. For experimental setup, we
select PointNet [5], PointConv [9], and DGCNN [8] as the backbones and conduct classification on ModelNet40. The results
are presented in Table 1. As shown in the table, the performance of all the networks can be boosted by providing PCA-based
canonical poses with correctly handled ambiguities.

2.2. Effect of the spatial transform networks

Spatial transform networks (STN) [1] are self-attention modules designed to take the point cloud as input and learn to
apply transformations on it. In general, such a module can effectively handle small rotational perturbations but is weak for
large ones. Therefore, although STN is commonly mentioned as a component for various existing network structures [5, 6, 8],
it is often omitted in realistic implementation for being either redundant (on pre-aligned data) or ineffective (on randomly
rotated data). However, we find that STN does contribute when PCA-based canonical poses are used as the inputs. Specifically,
the classification accuracy declines from 91.6% to 89.7% if STN is omitted. This result agrees with our observation that
PCA can achieve rough alignments with small rotational disorders. Therefore, we consider STN as a necessary module for
complementing PCA-based canonical poses.

2.3. Time consumption of the pose selector module

As mentioned in Section 4 of the main paper, our proposed pose selector is a lightweight module that barely increases
the computation time for inference. For demonstration, we record the time required for classifying a point cloud of shape
(1024× 3) with both the vanilla DGCNN network and the one that consists of the pose selector. In our test, the former version
takes 6.03 milliseconds to infer a certain input pose and the latter requires 6.51 milliseconds on a Tesla V100 GPU. The main
time consumption lies in the data transfer between CPU and GPU.

2.4. Per-category mIoU on ShapeNet

We report the per-category mIoU of the ShapeNet part segmentation task in Table 2. We note that, different from the other
methods, the results originally reported in Li et al. [3] and LGR-Net [12] in their papers are the mean values of the mIoU
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over all categories. Therefore, we recalculate their mIoU over all the instances using their reported per-category mIoU and
summarize these converted results for a straightforward comparison.

We also show some examples of segmentation results from each class in Figs. 2 and 3. We compare our results with the
ground truth and the results obtained by using only one of the poses that is randomly selected. As shown in the figures, some of
the shapes can be correctly segmented just by using one of the poses. However, for some shapes, chairs for example (right side
of the first row in Fig. 2), wrong classes are assigned. For other shapes such as laptops and tables (left side of the second row,
right side of the last row in Fig. 3, respectively), the labels are reversed, showing the negative effects of random orientation.
On the other hand, these shapes are successfully segmented into correct parts using our pose selector, despite their varying
poses. Our method especially excels at shapes whose self-symmetry is prominent.
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Ground truth 1-pose Ours

Figure 2: Visualization of the ground truth segmentation, results using 1 of the 24 possible poses, and our results from the
former 8 classes in ShapeNet part segmentation dataset. The poses are drawn from the 24 possible PCA-based canonical poses.
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Figure 3: Visualization of the ground truth segmentation, results using 1 of the 24 possible poses, and our results from the
latter 8 classes in ShapeNet part segmentation dataset. The poses are drawn from the 24 possible PCA-based canonical poses.
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