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A. Appendix

A.1. A brief review of NAS

NAS methods aim to automatically optimize neural net-
work architectures by exploring search spaces with search
algorithms and evaluating architectures by means of rating
schemes. NAS methods can be divided into two categories
depending on the rating scheme utilized, i.e. multi-trial
NAS and weight-sharing NAS. Multi-trial NAS methods
[92, 2, 54, 63, 42, 83] rate all sampled architectures by train-
ing them from scratch, making this process computationally
prohibitive and difficult to deploy on large datasets. They
either perform architecture rating by training on relatively
small datasets (e.g. CIFAR-10) [92, 2, 54] or by training
for the first few epochs (e.g. 5 epochs) [63] on ImageNet.
To avoid repeated training of candidate networks, weight-
sharing NAS methods [7, 43, 18, 1, 6, 13, 82] optimize
a supernet that encodes the whole search space, then rate
each candidate architecture according to its weights inherited
from the supernet. Among them, gradient-based approaches
[43, 7, 70] and sampler-based approaches [52, 61] jointly
optimize the weight of the supernet and the factors (or agent)
used to choose the architecture; for their part, one-shot ap-
proaches1 [22, 15, 6, 4, 51] optimize the supernet before
performing a search with the frozen supernet weights. We
refer to [55] for a more comprehensive NAS review.

*Corresponding Author.
1In this paper, following the pioneering works SMASH [6] and One-

shot [4], when we refer to one-shot NAS methods, we are discussing those
incorporating two-stage (i.e., a supernet training stage and a searching
stage) weight-sharing methods rather than the general weight-sharing NAS
discussed in [80].

A.2. Implementation Details

Search spaces. We evaluate our method on three search
spaces:

• HyTra search space. The beginning of the networks
in this search space is the classic ResNet stem that
reduces the spatial resolution by a factor of 4 with
a strided 7×7 convolution layer and a max-pooling
layer. It contains L = 16 choice block layers in to-
tal, as the same to ResNet50. Before the first choice
block layer, the input can be further down-sampled to
different scales. The downsampling module consists
of multiple 3×3 convolutions with stride of 2. At each
choice block layer, the spatial resolution can either stay
unchanged or be reduced to half of its scale, unless
reaching the smallest scale 1/32. As introduced in Sec.
4, this search space contains two disparate candidate
choices: {ResConv, ResAtt}. As transformer blocks are
expensive in the first scales, we only enable the choice
of ResAtt in the last two scales (i.e. 1/16 and 1/32).
The total size of this challenging hybrid search space is
roughly 2.8×106.

• MBConv search space. MobileNet-like search space
and its variations are generally used as benchmarks for
recent NAS methods [63, 29, 64, 7, 70, 15, 37, 46, 87].
Following Li et. al. [37], we use a search space with 18
layers and each layer contains 4 candidate MobileNet
blocks (combination of kernel size {3, 5} and reduc-
tion rate {3, 6}). This results in a large search space
containing about 418 ≈ 6.9×1010 architectures.

• NATS-Bench SS . The NATS-Bench size search space
SS [17] is a channel configuration search space built



upon a fixed cell-based architecture with 5 layers, where
the 2-nd and 4-th layers have a down-sample rate of
2. Number of channels in each layer is chosen from
{8, 16, 24, 32, 40, 48, 56, 64}. SS has 85 = 32768

architecture candidates in total. Candidates of different
channel numbers in our supernet share the weights in
a slimmable manner [78, 77, 76, 38, 9]. We divide the
supernet into 3 blocks, according to spatial size.

Datasets. The datasets we use to evaluate and analyze our
method include ImageNet [16], CIFAR-10 and CIFAR-100
[36]. ImageNet is a large-scale dataset containing 1.2 M
train set images and 50 K val set images in 1000 classes.
We randomly samples 50 K images from the original train
set to form a NAS-val set for architecture rating and use the
remainder as the NAS-train set for supernet training. No
labels are used during training and searching of our NAS
method. Finally, our searched architectures are retrained
from scratch on train set and evaluated on val set. For
CIFAR-10 and CIFAR-100 [36], we use the splits proposed
in NATS-Bench [17]. CIFAR-10 is divided into 25 K train

set, 25 K val set, and 10 K test set. CIFAR-100 is devided
into 50 K train set, 5 K val set, and 5 K test set. The
final accuracies of searched architectures are queried from
NATS-Bench SS [17].

Training details.
We train each block of the BossNAS supernet for 20

epochs including 1 linear warm-up epoch on ImageNet. For
the relatively smaller CIFAR datasets, we extend it to 30
epochs. In each training step, we randomly sample 4 paths
for the ensemble bootstrapping. Other hyperparameters for
self-supervised training of the supernet follow closely to
BYOL [21], we use the LARS optimizer [75] with a cosine
decay learning rate schedule [44]. The base learning rate is
set to 4.8 for a total batchsize of 4096.

For ImageNet retraining of BossNet-T models, we fol-
low similar with DeiT [66], as we found it robust for both
CNNs and transformers. More specifically, we use AdamW
optimizer with 1e-3 initial learning rate and cosine learning
rate scheduler, for a total batch size of 1024. Weight decay
is set to 0.05. We use model EMA with decay rate 0.99996
following [79]. Please refer to DeiT [66] for more details on
data-augmentation and regularization.

For ImageNet retraining of BossNet-M models, we fol-
low closely to EfficientNet [64]. We use batchsize 4096,
RMSprop optimizer with momentum 0.9 and initial learning
rate of 0.256 which decays by 0.97 every 2.4 epochs. Please
refer to EfficientNet [64] for more details of other settings.

Re-implementation of other NAS methods on HyTra.
For DNA [37], we use ResNet-50 [25] as the teacher

model. We divide the supernet into four blocks, with four
layers in each block, and train each block for 20 epochs. The
intermediate features of every block of the student supernet
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Figure 8: Comparison of architecture rating and its true
accuracy of our BossNAS and CE [27] on NATS-Bench SS
with CIFAR datasets.

Dataset Method τ ρ R

CIFAR-10
CE [27] 0.42 0.60 0.59
BossNAS 0.53 0.73 0.72

CIFAR-100
CE [27] 0.43 0.60 0.60
BossNAS 0.59 0.76 0.79

Table 6: Architecture rating accuracy on NATS-Bench SS
with CIFAR datasets.

and the teacher are all downsampled with global pooling and
projected with one fully-connected layer before calculating
distillation loss, as the scale of different candidate block is
not the same in HyTra search space. Other settings follow
closely to DNA [37].

For UnNAS [41], we adopt rotation prediction [35] (Rot)
pretext task, for its simplicity. Following [41], we use three
extra stride-2 convolution layers at the beginning of the
supernet to reduce spatial resolution. The supernet is trained
for 2 epochs as in [41].

A.3. Additional Analysis on NATS-Bench SS

Architecture rating comparison. We compare with the
predictor-based NAS method CE [27] by architecture rat-
ing accuracy on CIFAR-10 and CIFAR-100. As shown in
Fig. 8, we compare the two NAS methods by plotting the
correlation of the architecture rating and the true accuracy
of 3000 randomly sampled architectures from NATS-Bench
size search space SS [17]. Architectures with BossNAS form
denser and more spindly scatter pattern than CE on both of
the two datasets. Moreover, as measured quantitatively in
Tab. 6, BossNAS outperforms CE by a large margin (0.11
and 0.16 τ ) in both datasets.
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(a) Ranking correlations during supernet training on CIFAR-10.
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(b) Ranking correlations during supernet training with CIFAR-100.

Figure 9: Convergence behavior of BossNAS on NATS-
Bench SS and CIFAR datasets.
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(c) Architecture of BoTNet-T.

Figure 10: Visualization of Human-designed Architectures
in HyTra. Blue nodes denotes ResConv and red nodes de-
notes ResAtt.
Convergence Behavior. We illustrate the architecture rating
accuracy of BossNAS during its 30 epoch supernet training
phase on CIFAR datasets in Fig. 9. The architecture rating
accuracy increases quickly and steadily with minor fluctu-
ations, in a similar manner with that on MBConv search
space (Fig. 7). In particular, architecture rating accuracy
of our BossNAS converges to a satisfactory result, 0.76 ρ,
smoothly and quickly within only 20 epochs on CIFAR-100,
and continues to be stable for the subsequent 10 epochs.

A.4. Visualization of Human-designed Architec-
tures in HyTra

The architectures of ResNet50-T, ViT-T/16 and
BoTNet50-T from our HyTra search space are illustrated
in Fig. 10. Their architectures follow as closely as possible
to the architectures of their prototypes.


