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In this supplementary material, we first elaborate our net-
work architecture and its ablation study. Next, we provide
more training and implementation details. After that we dis-
cuss the alignment between the input segmentation map and
the generated images and also discuss about the diversity of
our model. Finally, we show more training data ablation
study on bedroom dataset and provide more qualitative re-
sults.

1. Architecture details and its ablation

We use our base model for the 512×512 resolution as an
example to demonstrate our architecture. Fig. 1 shows the
encoder architecture which we use for the bedroom dataset,
where we have 151 semantic labels and 1 edge map. The in-
put is converted into a fixed 64-channel feature by the first
1 × 1 convolution. Then this feature will be passed into a
series of ResBlock (details of the ResBlock are shown on
the top right of Fig. 1). Once the feature resolution reaches
4 × 4, one branch will flatten it and calculate mean and
variance through fully-connected layers. Another branch
(named top-down pathway in the main paper) will process
this feature with a few layers of convolution and upsam-
pling. In the meantime, the top-down pathway will aggre-
gate previous features with lateral connection to preserve
better spatial alignment. Eventually this pathway will out-
put ϕ′ which is fed into the feature cropping module as
shown in the Fig.2 in the main paper. We set resolution
of ϕ′ 16 times smaller than the input in all our experiments.

Note that a non-square input can be also given to gen-
erate non-square shape ϕ′. For example, in the Cityscapes
dataset, the input has the resolution of 512 × 1024, then
this encoder will yield ϕ′ with the size of 32× 64. A small
modification is needed for the first linear layer whose input
should be 512×4×8 in this case. The encoder architecture
for the other cases, including our class-specific models, is
similar with adding/removing the ResBlock depending on
the input resolution.

The decoder architecture is same with that of Style-

GAN2 [11] with one exception that the input is our starting
feature tensor ϕ instead of learnable constant as shown in
Fig. 2. Our discriminator is same as the one used in [11].
Please refer [11] for more details.

As mentioned in the main paper, our encoder designed
in this way, so that it can provide the decoder merged multi-
resolution features ϕ. The higher resolution features are
more accurately localized to the input where as lower res-
olution features are semantically stronger and have more
global information. We conduct an ablation study to show
the importance of multi-resolution features. Specifically,
we remove our top-down path way in the encoder and di-
rectly use the output of encoder1 (the 512×32×32 feature
outputted from the 4th ResBlock in the Fig. 1 ) as the start-
ing feature for the decoder. We found that the image quality
is not as good as our base model. The qualitative result is
shown in Fig. 3. The FID score 40.88 which is higher than
our base model result 34.41 (Table 2 in the main paper) is
consistent with the visual quality comparison.

2. Datasets details

Here we provide more details about our extra datasets
used by our class-specific models. In order to be consistent,
we use the same dataset index as used the main paper.

(4) iMaterialist [3]. It contains images of 128 categories
of furniture. We selected 36 categories commonly appear-
ing in the bedroom and use the segmentor [13] trained on
ADE20K to get the masks. Totally, we have 50,370 images.

(5) Indoor. We selected childs room, dining room
and living room from the Places dataset [14] and apply the
segmentor trained on ADE20K to get masks. Note that we
use bedroom and hotel room from the Places [14] to train
our base model, whereas these three categories are used for
class-specific generator training.

(6) Cityscapes extra [1]. Except for commonly used
3,000 images with annotations, there are also extra 19,998
training images officially provided. We train a segmen-
tor [13] to get masks for those images.
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Figure 1. The encoder details. This includes both encoder1 and
encoder2 in the Fig. 2 in the main paper. Up and Down stand for
upsampling and downsampling operation.

ModulatedBlock

ModulatedBlock

ModulatedBlock

ModulatedBlock

512*32*32

512*64*64

256*128*128

128*256*256

𝜑

64*512*512

up

tRGB

tRGB

tRGB

tRGB

up

up

[ 512 Linear ] * 8

z

Figure 2. The decoder details. We adopt it from StyleGAN2 but
without the constant input.

(7) Caltech Pedestrian [8]. 10 hours of video taken
from a vehicle driving through urban environment. We ex-
tract every alternate frames to get 124,942 images and we
use the segmentation model trained on the Cityscapes to ob-
tain pseudo labels.

(8) CelebaMask-HD [7]. It includes 30,000 segmenta-
tion masks for the CelebAHQ face image dataset. There
are 19 different region categories. To be compatible with

our full human body dataset annotation, we merge some
categories such as eyes, mouth, skin, nose into face cate-
gory. We only use this dataset to demonstrate our mixed-
resolution application in Fig. 15−16 as this dataset can pro-
vide us very high resolution face images.

3. Training details
For our class-specific generator, the following classes are

trained at 128× 128 resolution: person (Cityscapes), shoes
(Human) and face (Human). For the other classes in the
main paper, we train them at 256 × 256 resolution. We
choose the resolution for each class based on their average
size in training data. Please note that the average training
data size is not from base image size, but from the raw
training data size. For example, if we choose face from
512 × 512 real full human body images, which are used to
train base model, then it is difficult to get 128 × 128 face
images since the face region only occupies a small portion
of the image. However, since the raw image we collected
is at least at 1K resolution, we can acquire a lot of higher
quality face images at 128 × 128 resolution from raw data.
This is the advantage of having class-specific generator. To
maintain the training data quality, we do not use cropped
instance smaller than 64× 64 and 128× 128 for 128× 128
and 256 × 256 class-specific model training, respectively.
How to fully take advantage of all training data could be an
interesting future work.

Since our discriminator expects a square shape input, for
the Cityscapes dataset, we split each image (1024 × 512)
into two 512 × 512 images and stack them together before
feeding into the discriminator. We have explored this by
trying zero padding as an alternative way. Specifically, we
pad the image into 1024×1024 before feeding into discrim-
inator. However, we found this leads to worse results than
splitting. The FID score of padding is 51.44 compared with
47.04 using splitting (Table2 in the main paper).

We train our base model for 300K iterations with the
batch size of 16 for bedroom and human dataset. For the
Cityscapes, we only train 60K iterations with the same
batch size due to less training data. For bedroom and human
models, each of them only take 2 32GB V100 GPUs. Due
to higher resolution for the Cityscapes (1024×512), we use
4 V100 GPUs to train. However, based on our observation,
it usuallly takes 22GB memory per GPU, thus we hypothe-
size 4 GPUs with 24GB memory may also work. Our model
is more friendly for training compared with SPADE-like ar-
chitecture where we found it needs 8 32GB GPUs to train
with the batch size of 16 at 512 × 512 resolution. Among
baselines we tried, we found LGGAN [10] consumes the
most resources. We can not fit batch size of 1 in a sin-
gle GPU when scale to higher resolution using their default
code. Although for the cityscapes we were able to fit batch
size of 1 by cutting their default –ngf hyperparameters from



32 to 28. (ngf controls numbers of channels, for example
32 channels becomes 28, 64 becomes 56). We usually train
150K iterations for our class-specific models with the same
batch size. Since we only train them at either 128 or 256
resolution, 1 32GB V100 is sufficient for each class. Note
that since our class-specific model is not dependent on each
other, thus 8 different classes can be trained in parallel in a
8-GPU machine.

We set the loss weight of KL-Divergence and percep-
tual loss as 0.01 and 1, respectively (λ1 and λ2 in the main
paper ). Following the StyleGAN2 [11], we only conduct
path regularization and r1 regularization every 4 and 16 it-
erations. The loss weight of these two terms are 2 and 10
(note that these two terms are not explicitly symbolized in
the main paper, but there are within Lstylegan). Also, the
perceptual loss is applied every 4 iterations.

4. Composition

During the inference time, we need to composite in-
stances generated by our class-specific generators. First, we
need to crop our base image using enlarged bounding box
of one instance to get its surrounding pixels Ci, and then
either mask or blur out the instance according to the pro-
cedure used during training. Similarly, a cropped semantic
mask Cs is also acquired. The class-specific model takes in
these two and generates an instance Ic.

Next, we will composite this new instance Ic into the
base image Ib. Since we know the original size and loca-
tion of this instance in the base image, we will first create
an alpha mask of this instance using ground truth instance
mask Ins,

Malpha =

{
1, if Ins(i, j) = target instance idx

0, otherwise
(1)

where Ins is a 2D map with different values at each lo-
cation, and each value is the index for a unique instance.
The target instance idx is the index for the current target
instance. Then we will resize and relocate the generated in-
stance Ic into the correct position according to the Malpha

to get the relocated generated instance Ic relocation. In order
to avoid the potential small gaps due to quantization during
the process of resizing and relocating, we will further di-
late boundaries of both Malpha and Ic relocation. Finally
the composition image Icomp is

Icomp = M ′
alpha×I ′c relocation+(1−M ′

alpha)×Ib, (2)

where M ′
alpha and I ′c relocation are dilated Malpha and

Ic relocation. After the composition is done for the first in-
stance, Icomp will be served as base image Ib for the next
instance.

Bedroom Human City Bedroom(f) Human(f) City(f)
SPADE 49.28 79.40 33.83 64.42 94.02 68.40
OASIS 63.15 82.85 44.56 68.37 93.62 68.80
Ours 64.59 83.30 45.01 74.31 95.06 82.64

Table 1. Object level alignment. Top-1 classification accuracy
in cropped generated instances in three different datasets for all
classes (left three columns) and only foreground objects for which
we have class-specific generators (right three columns)

5. Alignment study

As mentioned in Section 5 of the main paper, since we
only provide the feature with 32×32 resolution (in the case
of 512× 512 base image generation) as the input to the de-
coder, our base image does not perfectly follow the input
segmentation map at pixel level alignment. However, we
argue that this could be a desired property sometimes. For
example, in the application of generating an image based on
the semantic map, users may not provide a perfect semantic
map and a model with flexibility to alter boundaries of ob-
jects may have potential to generate more realistic objects.
Nevertheless, we still conducted a series of studies to study
this problem.

In order to verify the alignment in human perception, we
first conduct a user study. Specifically, we show segmen-
tation map at top and two images at bottom (base image
and baseline) to AMT workers and ask them which image
corresponds better to the semantic mask. We explicitly ask
the workers to not evaluate the image quality. Please see the
screen shot in Fig. 17. Instead of forcing them to choose one
image, we also give them the third option (i.e., “similar”)
for the cases that are hard to tell which one is better. Table 3
shows the results. Surprisingly, we found that, according
to study participants, our base image has better correspon-
dence with respect to the input semantic map in bedroom
dataset. We attribute this to the fact that we generate much
better quality images compared with baselines (please refer
to Table 3 in the main paper). Some poorly synthesized ob-
ject instances may not be easily recognizable in the baseline
results, thus leading to worse perceptual alignment quality
compared with ours.

On the human dataset, baselines perform better than our
approach for the alignment evaluation. But we are better
or equally good compared to baselines around half of the
times. On the Cityscapes dataset, our base model has worse
alignment quality compared with baselines. A potential so-
lution to fix the alignment issue caused by our base model
is to use CollageGAN. As our CollageGAN model uses
the ground-truth instance mask while training class-specific
models and then performs composition using the instance
mask, the final generated image would be better aligned to
the segmentation mask. Thus we did another user study to
compare our CollageGAN results with OASIS [9] on the
Cityscapes dataset, where our base model is inferior. The
result is shown in the bracket in the Table 3. We observe



that after the composition, users prefer our results more.
Also, our class-specific model is not dependent on our base
model. Thus, if one wants to have a better-aligned base im-
age, they can choose a baseline approach such as OASIS
to generate the base image and then use our class-specific
generator idea to enhance different local details.

As mentioned earlier, since our model may not generate
images which are perfectly pixel-wise aligned with inputs,
thus we conduct a quantitative evaluation by comparing our
CollageGAN model and baselines at object-level alignment.
Specifically, we first crop each instance for all classes in
real images and train an object classification model using
Resnet50 [4]. We train three different classifiers for three
different datasets (bedroom, cityscapes and human), respec-
tively. In order to tackle data imbalance issue we adopted
the technique proposed in [2]. In the Table 1, we report top-
1 classification accuracy for three different approaches. The
first three columns indicate we have best results, reflecting
that our model generates better image quality. The last three
columns indicate that having class-specific generators can
further improve the results.

6. Diversity
To understand how diverse our generated images can

be, we also quantitatively evaluate diversity of our model.
We compare our base model with baselines. Here we
report recall (↑) to directly measure diversity [6]. The
results for SPADE/OASIS/Ours on there datasets: Bed-
room: 0.561/0.741/0.776; Human: 0.236/0.776/0.744;
City: 0.342/0.724/0.733. The result indicates that our base
model and OASIS has similar performance and they are
both better than SPADE, which we hypothesize that it is
due to the fact that the SPADE has a strong reconstruction
supervision during training (high loss weight for perceptual
loss [5] and feature match loss [12]), forcing the model to
generate neutral color (This can be observed from the back-
ground in the human dataset results; Fig. 5 ).

7. User study interface
Totally, we conducted three types of user study. The first

one is correspondence study between our base model re-
sult and baseline result. The second one is realism study
between our base model result and baseline result. The last
one is realism study between our base model result and Col-
lageGAN result. Their interfaces are shown in Fig. 17−19

8. Additional data ablation study
Since our class-specific model can be trained using data

from other sources, thus, in this section, we study the im-
portance of adding extra data. Table 2 shows results on
the cityscapes dataset (top) and the bedroom dataset (bot-
tom). For classes in the cityscapes, our class-specific gener-

FID ↓ User study ↑
I: Base II: w/o extra III: w/ extra I vs. II I vs. III

car 44.50 36.71 30.42 23% / 77% 6% / 94%
person 98.88 88.47 82.34 13% / 87% 11% / 89%

chest 146.15 137.65 132.12 38% / 62% 29% / 71%
chair 165.24 161.00 155.52 43% / 57% 30% / 70%

pillow 127.67 135.58 136.79 70% / 30% 67% / 33%
lamp 88.20 84.70 80.12 66% / 34% 38% / 62%
table 125.48 116.39 119.44 41% / 59% 40% / 60%

Table 2. Additional data ablation study. I is our base model. II
and III are CollageGAN models without and with extra data.

Datasets Ours vs SPADE Ours vs OASIS Ours vs LGGAN
Bedroom 66.8/4/29.6 59.6/4/36.4 NA
Human 34/22.4/43.6 31.6/15.2/53.2 NA

Cityscapes 17.2/13.2/69.6 18.2/5.7/76.8
(46.8/6.8/46.4)

21.2/13.6/65.2

Table 3. The three numbers in each cell indicate percent of times
our model is preferred vs similar vs baseline is preferred in terms
of alignment. The CollageGAN result is in the bracket for Ours vs
OASIS on cityscapes dataset.

ators perform better than the base model without additional
data. By adding more data, the results will be even bet-
ter in terms of both FID and user study. In the bedroom
dataset, according to the FID, our class-specific model with-
out extra data is doing better than the base model in the most
cases, except for pillow class. For human evaluation, class-
specific model without extra data is again better for all the
classes except for lamp and pillow. For lamp, we end up
removing lot of images as we want lamps to be bigger than
128×128 for training class specific generator. But our lamp
model trained with additional data can easily outperform the
base model in term of human evaluation. Also, we can see
that adding more data improves the performance of all the
classes consistently. This proves that one of advantages of
having separate models is using additional data to boost the
performance.

9. Additional qualitative results

Fig. 4−6 show the our base model comparison with
baselines on different datasets. Fig. 7−9 show the compari-
son between our base model results and composition results
using class-specific models. Fig. 10 shows more results of
replacing real objects in the real image. Please zoom in
and check how well our class-specific generator can gen-
erate instances that look consistent with their background,
such as the lighting condition on the beds and upperclothes
in the 4th and 5th rows. Fig. 11−13 shows our base model
multi-modal ability on semantic to image generation. Here
we sample different z code to get different results. Fig. 14
shows importance of context for our class-specific genera-
tor. For example, the models may lack knowledge of ori-
entation (row 1,2) or lighting condition (row 1,3,4) without
context.

Finally, we show another interesting application of our
class-specific model in Fig. 15−16 to generate mixed-



resolution results where the important region is in high res-
olution. Specifically, we train a face generator (with blurred
inputs) using the CelebA dataset. Different from the pre-
viously mentioned face generator, this model is trained on
the 256× 256 resolution. When we do the composition, we
first use our base model to generate a full human body base
image Ib and resize this image to 4096 × 4096 resolution.
Then the face region can be replaced by the high quality
face Ic generated from the class-specific face model. One
interesting observation is that though the majority ethnic-
ity in our collected full human body data is Asian, we find
more western faces in the mixed resolution results due to the
different data distribution in the CelebA dataset. Thus, our
class-specific model idea can also be used to reduce bias
and increase the diversity of certain classes during image
synthesis by levaraging data from different sources.
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Figure 3. The middle column is the result of architecture without multi-resolution feature aggregation. We can see that using multi
resolution features add more details to the image. For example, chest in first three rows and bed in last row have more details with multi
resolution features.
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Figure 4. Visual comparisons of synthesis results by different methods (512× 512) on the ADE20K bedroom.
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Figure 5. Visual comparisons of synthesis results by different methods (512× 512) on the full human body dataset.



SPADE

OASIS Ours Base

OASIS

SPADE

Ours Base
Figure 6. Visual comparisons of synthesis results by different methods (1024× 512) on the Cityscapes dataset.
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Figure 7. Comparisons between our base model and our CollageGAN model on the ADE20k bedroom.
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Figure 8. Comparisons between our base model and our CollageGAN model on the full human body dataset.
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Figure 9. Comparisons between our base model and our CollageGAN model on the Cityscapes dataset.



Figure 10. Images in the red box are real images. Here we use the bed (top three rows) and uppercloth (bottom three rows) specific
generator to replace the original objects.



Figure 11. Multi-modal synthesis results on ADE20 bedroom by our base model. Each column shows multiple generations for same
semantic mask.



Figure 12. Multi-modal synthesis results on full human body by our base model. Each column shows multiple generations for same
semantic mask.



Figure 13. Multi-modal synthesis results on cityscapes by our base model. Each column shows multiple generations for same semantic
mask.
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Figure 14. class-specific generator will generate inconsistent results without context.



Figure 15. The mixed-resolution result. Here the base image is first resized to 4096 × 4096 and then face region is composited by high
quality face generated from face specific model.



Figure 16. The mixed-resolution result. Here the base image is first resized to 4096 × 4096 and then face region is composited by high
quality face generated from face specific model.



Figure 17. Alignment user study screenshot.



Figure 18. Realism user study screenshot.



Figure 19. Instance realism user study screenshot.


