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In this supplementary material, we first introduce our
data augmentation model. Then, we perform noise analysis
to show that our synthetic noise distribution is very close to
the real noise distribution in both the raw images and the
sRGB images. Finally, the effectiveness of DC-Net is veri-
fied.

1. Noisy Image Generation Model
In this section, we describe the details of our method to

synthesize realistic noisy sRGB images. The proposed pro-
cedure is shown in Fig. 1.

1.1. Inverse ISP

Even if the characteristic of noise in sRGB space is un-
known, the noise of raw data is well understood. We trans-
fer an image from the sRGB space to the raw space for noise
addition. Some methods have discussed the ISP pipeline,
such as [2, 8, 13]. Inspired by these works, we propose
a simplified but effective inverse ISP procedure, including
the most common ISP components. The ISP pipeline con-
sists of white balancing, demosaicing, color space conver-
sion, gamma transform, and tone mapping. In the inverse
ISP pipeline, the input is an sRGB image and the output is
a simulated raw image. We denote x as the input and y as
the output in every inverse ISP component for simplicity.

1.1.1 Inverse Tone Mapping

The S-shaped curve is usually used to obtain better visual
perception on an image, which is called tone mapping. Our
simulated tone mapping function and its inverse are defined
as:

x = 0.5− 0.5cos (πy), y =
1

π
cos−1 (1− 2x) . (1)

1.1.2 Inverse Gamma transform

Gamma transform is the most widely used non-linear pro-
cessing in ISP, which has the form of y = xλ. We adopt
λ = 2.2 as most platforms such as Windows and Mac.

1.1.3 Inverse Color Space Conversion

In order to make an image have the same visual effect as
possible on various display devices, the demosaiced image
is needed to be transformed to the device-independent color
space XYZ and then to the sRGB space. These two trans-
forms are denoted by MRaw→XYZ and MXYZ→sRGB. For
inverting this color space conversion, we have:
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)xr

xg

xb

 . (2)

From the metadata of an image, the transform matrix
MRaw→XYZ can be derived. As for MXYZ→sRGB, it is a
standard proposed by CIE (Commission Internationale de
L’Eclairage) in 1931.

1.1.4 Inverse Demosaicing

The original raw data captured by a single sensor with the
Bayer filter has red, green, and blue three primary color
components. To convert an image from the Bayer pattern
to an sRGB image, we need to interpolate the two miss-
ing color values in each pixel. For simplicity, DND [12]
and the method in [2] use the bi-linear interpolation, and
SIDD [1] uses another simple linear interpolation [9]. In
practical application, cameras usually employ more com-
plicated interpolation methods like interpolation based on
chromatic aberration [4], non-local equilibrium, and in-
terpolation based on gradient. Although the interpolation
method is unknown for an image, these methods are based
on an assumption that the pixel color values at the origi-
nal Bayer pattern positions are accurate and unchanged1.
Thanks to this property, we sample the original pixel values
in the Bayer pattern positions to recover the original Bayer
pattern based on the metadata.

1For example, the red component at a position of a Bayer pattern keeps
unchanged, while the green and blue components at this position are inter-
polated.
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Figure 1. A flowchart illustrating the main steps of realistic noisy image generation in our procedure. A clean sRGB image is passed
through the inverse ISP module to get a raw image, and after been added noise, the raw image is pre-processed to obtain the input to the
DC-Net, which generates a pre-sRGB noisy image. Finally, the realistic noisy sRGB image is obtained by the post-processing.

1.1.5 Inverse White Balancing

White balance in digital photography is to adjust the colors
of an image so that the image looks more natural. We go
through the process of adjusting colors to primarily get rid
of color casts, in order to make the image match what we
see when we take it, since most light sources (the sun, light
bulbs, flashlights, etc.) do not emit purely white color and
have a certain color temperature. In practice, the three color
values R, G, and B in the raw data are multiplied by different
gains to correct color casts, and then the white and black
level clipping is used to keep the pixel values in the range of
[0, 1]. The gains are stored in the metadata. In inverse white
balancing, we adopt the same pipeline as [2] to simulate the
inverse white and black level clipping.

1.2. Noise Model

The noise in the raw data can be divided into two cate-
gories: shot noise and read noise. Shot noise is caused by
the random arrival of photons. This is a fundamental trait of
light. Since each photon is an independent event, the arrival
of any given photon cannot be precisely predicted; instead,
the probability of its arrival in a given period of time is gov-
erned by a Poisson distribution. With enough samples, a
graph plotting the arrival of photons shows the familiar bell
curve with a long tail on the right.

Read noise, which is also called electronic noise, is an
uncertainty introduced by electrons when the electrons are
converted to digital signals via the preamplifiers and the
analog-to-digital converters (ADC). The read noise exhibits
a Gaussian distribution with zero mean and fixed variance
both in CMOS and CCD sensors [5].

The read noise is related to imperfections in the sensor
electronics and is independent of the intensity of the light
hitting the sensor. The independence between the read noise
and shot noise means the variance of their sum is equal to
the sum of their variances.

The intensities of these two kinds of noise are different
under different brightness. The shot noise is dominant in the
bright areas, while the read noise dominates in the dark [7].
In the dark areas, the distribution of the noise obeys Gaus-
sian distribution. In brighter areas, the shot noise dominates
with a large Poisson distribution parameter λ. We assume
Xλ denotes the noisy intensities/colors of images and obeys
Poisson distribution:

Px =
λxe−λ

x!
. (3)

The moment generating function of Xλ is:

lim
λ→∞

MXλ(t)
= E

[
etXλ

]
= eλ(e

t−1). (4)



Then consider a standardized Poisson random variable
Xλ−λ√

λ
. We calculate its moment generating function:
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(5)
This implies that the associated unstandardized random

variable Xλ has a limiting distribution that is Gaussian with
mean λ and variance λ. For large enough λ, this distribution
can be regarded as a Gaussian distribution. The approxima-
tion is:

P (λ) ≈ N (λ, λ) . (6)

Because of the additivity of Gaussian distribution, we
construct a realistic noise model of the raw image as [5]:

y = x+N (0, σ (x)) , σ2 (x) = βsx+ βr, (7)

where βs is the signal-dependent component of the shot
noise, and βr is the independent component of the read
noise. x and y represent the clean and noisy raw images,
respectively.

With greater levels of luminosity, lower ISO, and longer
exposure time, the image becomes cleaner with less noise.
However, the read noise does not disappear but is closer to
a threshold since it is a kind of sensor-dependent noise. We
validate our observation by calculating the noise parameters
of the images in the SIDD data set. The result is shown
in Fig. 2. Based on the statistics, we use an exponential
function to estimate the noise level functions (NLFs):

ln(βr) = aebln(βs) − c +N (0, σ) . (8)

We use the Levenberg-Marquardt algorithm [10] to esti-
mate the parameters of Eq. 8, and obtain a = 71.28,b =
0.5496, and c = 13.86 . Empirically, we set σ = 0.3. In
our experiment, we randomly select ln(βs) from the range
of [−9.1,−3.8] to generate the shot noise of each image.
Then βr is derived from Eq. 8 to generate the read noise.

1.3. Pre-Prosessing

In order to restore the sRGB image from the noisy raw
image, the ISP is carried out. Some ISP components are
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Figure 2. Comparison between the real NLFs and our NLFs. The
real NLFs are recorded in the metadata of cameras. Our NLFs are
randomly sampled from Eq. 8.

invertible but others are not. Usually, in a simplified ISP
pipeline, all the ISP components are invertible except de-
mosaicing and white and black level clipping. We design a
network to learn Demosaicing and to reduce the loss by the
Clipping, which is named DC-Net. Before the network, we
pre-process the raw image to relieve the training burden of
DC-Net, due to the following reasons. Firstly, it is of great
difficulty in directly learning a pipeline from raw images to
sRGB images, which is validated by our experiment. So it
is better for DC-Net to focus on specific stages in ISP. Sec-
ondly, it is better to design a network to learn the unknown
demosaicing rather than to apply a simple bi-linear interpo-
lation. To begin with, we perform white balancing on the
raw image and apply the black and white level clipping2.
Then we rearrange the Bayer pattern to a fixed format (e.g.,
RGGB) as the input of DC-Net (see Fig. 2). As a result, we
simplify the problem of DC-Net’s training to mainly learn
both demosaicing and how to reduce the loss generated by
the clipping. The output of DC-Net is called the pre-sRGB
noisy image.

1.4. DC-Net

In inverse demosaicing, only the pixel values in the posi-
tions of the original Bayer pattern are sampled and the inter-
polated pixels are abandoned. As a result, it is impossible to
restore its demosaiced image with only the raw noisy image.
Some works simplify this procedure as bi-linear interpola-
tion such as [11, 2]. Nevertheless, it is artifact-prone and the
most naive demosaicing technique. Besides, the whole ISP
is a simulated process with errors. For example, the black
and white level clipping is irreversible which is adopted af-
ter white balancing and color space conversion. DC-Net is

2The clipping is necessary because after white balancing, some pixel
values are out of the range [0, 1].



designed to tackle these problems.
Our DC-Net is inspired by [6], but with two improve-

ments. First, in the demosaicing network [6], we find that
the artifacts on the high-frequency regions mainly come
from the concatenated masks. Therefore, in our DC-Net, we
use the unmasked original input for the concatenation. Sec-
ond, a new module called simulated demosaicing is added.
Based on the property of demosaicing where the original
pixel colors in the Bayer pattern are unchanged, this mod-
ule can explicitly force DC-Net to keep these pixel colors.

As shown in DC-Net in Fig. 1, we first send the rear-
ranged Bayer images (e.g., RGGB) from the Bayer pattern
into K convolutional layers to learn the relationship among
the pixels. All the channels of the feature maps are set to
64. Then in the (K+1)th convolutional layer, we reduce
the number of filters to 8. We use the rectified linear unit
(ReLU) as the activation function. All the filters are 3 × 3.
After that, the input Bayer images and the 8 feature maps
are concatenated. Note that these Bayer images (RGGB)
are inserted at the 1st, 6th, 7th, and 12th locations so that the
following sub-pixel convolution [14] can directly generate
three demosaiced R, G, and B channels. Finally, a convolu-
tional layer with 64 3× 3 filters generates 64 feature maps,
which are fed into the last convolutional layer with 3 1× 1
filters to obtain the pre-sRGB image. The following mean
square error loss is used to train the network:

L =
1

N

N∑
i=1

∥ŷi − yi∥22 , (9)

where yi is the output of DC-Net, and ŷi as the ground
truth is obtained through the processing of the ith sRGB im-
age by three inverse ISP components: inverse tone mapping,
inverse Gamma transform, and inverse color space conver-
sion. Note that for the training of DC-Net, we do not add
additional noise with our noise model to the raw image; in-
stead, we train it using the real-world noisy images

1.5. Post-Processing

The pre-sRGB image finally goes through post-
processing before being viewed, which in order consists of
color space conversion, gamma transform, and tone map-
ping. Theoretically, owing to the invertibility of these post-
processing components, the original image can be well re-
stored as long as the output of DC-Net is real.

2. Noise Analysis

The key to generate realistic noisy images is that the gen-
erated raw images have noise properties similar to those of
real raw images. We evaluate it in terms of both the NLFs
of the raw images and the noise levels of the sRGB images.
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Figure 3. Statistics of the estimated NLFs. Our NLFs-SE curves
for both βs and βr are close to NLFs-E and NLFs-M, indicating
the similarity between our raw noise and the real raw noise.
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Figure 4. Noise levels of the sRGB images. We estimate the noise
levels in the real noisy images and our synthetic noisy images. The
distributions of our noise are similar to the real ones in all the three
channels (the pixel values are normalized to [0, 1]).

2.1. NLFs of the Raw Images

Noise in the raw space is determined by shot and read
noise. It is an effective way to evaluate the synthetic noise
by estimating the NLFs of the generated raw images. We
calculate the Poisson-Gaussian noise parameters βs and βr

on SIDD by using [5], which is an effective method to esti-
mate the NLFs. For a noisy and noise-free raw image pair in
SIDD, the metadata of the noisy image raw image records
its NLF, which is denoted as NLF-M. The NLF of this raw
image can also be estimated with [5], denoted as NLF-E.
We apply the proposed inverse ISP and noise model to the
corresponding noise-free sRGB image, generating the sim-
ulated noisy raw image, of which the NLF is again esti-
mated with [5], denoted as NLF-SE. The comparison of the
three NLFs is given in Fig. 3, where the three curves are ob-
tained from the raw noisy images. We can see that overall
our NLFs-SE curves for βs and βr are close enough to the
NLFs-M and NLFs-E, showing that the noise properties of
our simulated noisy raw images are realistic enough.

2.2. Noise Levels of the sRGB Images

To figure out whether our noise is close to the real noise
in the sRGB noisy images, we use the noise level estima-
tion method proposed by [3]. We calculate the noise levels
of SIDD noisy images as well as our synthetic noisy sRGB
images for each channel. All of our images take the same
NLFs as the real noisy images for a fair comparison. We
draw the histograms based on the results, which are shown
in Fig. 4. We can see that the distributions of our noise are
similar to the real ones on all three channels. The major-



Figure 5. Visual demosaicing comparison. (a) Ground truth. (b)
The output of DemosicNet. (c) The output of DC-Net. Demosaic-
Net results in the zigzag effect on the edges while DC-Net pre-
serves the sharpness of them (best viewed on screen with zooming
in).

Table 1. Denoising results of DnCNN trained by the synthetic
noisy images generated with different demosaicing methods on the
SIDD testing set.

Bi-linear DemosaicNet DC-Net
PSNR 30.03 35.13 35.35
SSIM 0.5038 0.8106 0.8325

ity of the noise levels are below 0.03. All pixel values are
normalized to [0, 1].

3. Effectiveness of DC-Net

The goal of DC-Net is to convert the Bayer pattern to
the pre-sRGB image, which is similar to other demosaic-
ing methods. We compare it with DemosaicNet [6] which
is one of the state-of-the-arts. We train both Demosaic-
Net and DC-Net using the real-world noisy images from
the SIDD training set for demosaicing. After training, each
of them is used in our ISP pipeline to generate noisy sRGB
images, which are then employed to train DnCNN[15] for
denoising. Their performances for denoising are compared
in Table 1, which shows that DC-Net performs better. In
fact, DC-Net also outperforms DemosaicNet for demosaic-
ing, with PSNR 53.32dB vs. 53.16dB on the SIDD test-
ing set. Fig. 5 shows a visual comparison. DemosaicNet
simply upsamples the Bayer images to the original RGB
image size, inserts zeros at the interpolation positions as a

mask, and then the masked Bayer images are concatenated
with the feature maps in the last two convolutional layers.
This approach leads to the difficulty in filling the zeros with
proper values and results in the zigzag effect on edges. Our
approach exploits the nature of the Bayer images and re-
duces the distortion.
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