
Appendix

A. Implementation Details

Here we introduce the implementation details. All experi-
ments are implemented in PyTorch [43].

A.1. Hyperparameters

The following hyperparameters in this paragraph are used
across all experiments on all datasets. We use Adam [26] to
optimize the biased attribute hyperplane hb, where β1, and
β2 are 0.9, and 0.999, respectively. The number of iterations
for both Hessian Penalty [44] and our method is 1000.

In the experiments on disentanglement datasets (Sec. 5.1),
we set the batch size to 64. The learning rate is 10−3. The
coefficient of orthogonalization penalty (see λ in Eq. 5)
is 10. In terms of traversal images, we set the number of
traversal steps N (see N in Eq. 3) to 20, where the step sizes
{αi | i = 1 . . . N} (see αi in Eq. 3) are numbers evenly
spaced in the interval [−2, 2].

In the experiments on face images (Sec. 5.2), the learning
rate is 10−1. The coefficient of orthogonalization penalty
is 100. In the experiments on images from other domains
(Sec. 5.3), the learning rate is 10−3. In both previous ex-
periments, we set the batch size to 1 and set the number of
traversal steps N (see N in Eq. 3) to 6, where the step sizes
{αi | i = 1 . . . N} (see αi in Eq. 3) are numbers evenly
spaced in the interval [−3, 3].

A.2. Projecting Latent Code to Hyperplane

We use the offset ob for projecting randomly sampled la-
tent code z to the hyperplane hb. To explain that ob is jointly
optimized with wb when minimizing the total variation loss
LV , we describe the complete algorithm for computing total
variation loss LV .

We define the biased attribute’s hyperplane hb as wT
b x+

ob = 0. Therefore, the projected sampled latent code zproj
can be computed by:

zproj = z− wT
b z+ ob
||wb∥|2

wb. (6)

Then, the projected latent code zproj is used to sample traver-
sal latent codes {zproj + αi

wb

||wb|| | i = 1 . . . N}, which are
fed to generative model G for synthesizing traversal images:

I(b = bi) = G(zproj + αi
wb

||wb||
). (7)

Next, the traversal images {I(b = bi) | i = 1 . . . N} are
fed to the classifier for predicting the target attributes {P (̂t |
I(b = bi)) | 1 . . . N}. Finally, the total variation loss can

be computed by:

LV (wb, ob) =

− log
1

N − 1

N−1∑
i=1

|P (̂t | G(zproj + αi+1
wb

||wb||
))

− P (̂t | G(zproj + αi
wb

||wb||
))|.

(8)

Note that the total variation loss LV is a function of both
wb and ob because zproj is computed based on both of them.
Therefore, we can optimize both wb and ob when minimiz-
ing the total variation loss LV .

Algorithm 1: Compute Ground-truth Hyperplanes

Input: {I,a}: set of pairs of image I ∈ RH×W×3

and attribute label a ∈ RJ (J : number of
attributes); E : RH×W×3 → Rd: image
encoder of VAE-based model.

Output: Q ∈ Rd×J : normal vectors of attribute
hyperplane; o ∈ RJ : offsets of attribute
hyperplane

1 {z} := E({I}) /* Encode all images
into the latent space. */

2 randomly initialize a matrix W ∈ Rd×J

3 randomly initialize a vector o ∈ RJ

4 for each iteration do
5 Q := QR-decomposition(W )

6 p := sigmoid(QT z+ o)
7 l := BCE(p,a) or MSE(p,a) /* use

binary cross-entropy (BCE)
loss for binary attribute and
mean squared error for
continuous valued attribute

*/
8 W,o := Adam(l) /* update with Adam

optimizer */

A.3. Ground-truth Hyperplanes on Disentangle-
ment Datasets

Here we describe how to compute the ground-truth hy-
perplane for all attributes in the dataset. We do not follow
previous works [3, 23, 46] to compute the hyperplane via
SVM [9] or logistic regression [41] because we observe a
strong correlation of variation from different attributes even
with the orthogonalization trick introduced by Balakrishnan
et al. [3]. We suspect that the correlation exists because
the hyperplanes are computed individually. Therefore, we
propose a new method to optimize all hyperplanes jointly.
The algorithm is described in Algorithm 1.

Suppose the dataset has J attributes (i.e., J = 4, J = 5
for SmallNORB [32] and dSprites [20], respectively) and



the dimension of VAE-based model’s latent space is d. We
are also given the dataset’s images {I} and corresponding
attributes labels {a ∈ RJ}. Then we encode the images
{I} to latent codes {z} by the pre-trained encoder of the
VAE-based model. We will use latent codes {z} paired with
the attribute labels {a ∈ RJ} as training data to compute the
ground-truth hyperplanes.

After obtaining the training data, we initialize a matrix
W ∈ Rd×J , where the j-th column in W represents the
normal vector of j-th attribute’s hyperplane. Similarly, we
initialize a vector o ∈ RJ , where j-th value in o repre-
sents the offset of j-th attribute’s hyperplane. Then, we
perform QR-decomposition on W to obtain the orthogonal
matrix Q = QR-decomposition(W ). Next, Q and o are
used to classify the latent codes {z}. Supervised by the
attribute labels {a}, we optimize W and o iteratively via
Adam optimizer. After the optimization, Q and o are the
ground-truth normal vectors and offsets of hyperplanes for
all attributes in the given dataset. Since we use five dif-
ferent VAE-based models to compute latent codes {z}, the
ground-truth hyperplane of the same attribute is different for
different VAE-based models.

The computed ground-truth hyperplanes by the method
mentioned above are used for evaluation. However, we can-
not use them in the orthogonalization penalty. The reason
is that the orthogonal matrix Q ensures the orthogonaliza-
tion among the hyperplanes, which cannot be realized in
the real-world setting where the biased attribute is unknown
so that we cannot let the hyperplanes of the target attribute
and known attributes be orthogonal with the unknown bi-
ased attribute. Therefore, the normal vectors for the or-
thogonalization penalty are computed in a different way.
Suppose the b-th attribute is selected as the ground-truth
biased attribute under an experimental setting (recall that an
experimental setting is a triplet of (target attribute, biased
attribute, generative model)). Then, we remove the b-th col-
umn in the optimized W to obtain a new matrix W ′ ∈ RJ−1.
Next, we apply the QR-decomposition to obtain Q′ (i.e.,
Q′ = QR-docomposition(W ′)), so that column vectors in
Q′ ∈ RJ−1 are used as normal vectors of hyperplanes for
target attribute and known attributes in the orthogonalization
penalty.

A.4. Pseudo-ground-truth of Biased Attribute on
Face Images

As described in the main paper, since CelebA [34] and
FFHQ [23] are in-the-wild datasets, we do not know the
real ground-truth biased attributes. Therefore, for the quan-
titative evaluation, we obtain the pseudo-ground-truth of
the biased attribute as follows: First, we assume a larger
set of attributes as the potential biased attribute by adding
age, smile, eyeglasses, and pose attributes into consideration.
Then, we obtain the ground-truth hyperplanes of all five at-

tributes (four attributes mentioned before plus the gender
attribute) in the latent space of StyleGAN from Shen et al.
[46]. Next, for each pair of a target attribute and a possible
biased attribute (pairs of identical attributes are excluded),
we generate traversal images based on the biased attribute,
test them on a target attribute classifier, and record the total
variation (TV). We pick the attribute that produces the largest
total variation (TV) as the pseudo-ground-truth for the target
attribute.

A.5. Generative Models

Experiments on Disentanglement Datasets We use the
same set of hyperparameters with disentanglement-lib [36]
to train VAE-based models and we use Disentanglement-
PyTorch [1] as the code base for training. The dimension
of latent space of all VAE-based generative models (vanilla
VAE [27], β-VAE [20], DIP-VAE-I, and DIP-VAE-II [30])
is 10. The image size is 64× 64. The optimizer for training
VAE-based models is Adam (β1 = 0.9, β2 = 0.999) and the
learning rate is 10−4. The training steps is 3× 105.

Experiments on Face Images We use two generative
models: two StyleGANs[23] models trained on CelebA-
HQ [22] and FFHQ [23], respectively. The weights are
obtained from the officially released code from Shen et al.
[46]. The dimension of latent space of models mentioned
above is 512. The latent space of all models is the W-space.
The synthesized image size is 1024× 1024 and we resize it
to 64× 64 before feed them to the classifier.

Experiments on Images from Other Domains Style-
GAN [23] and StyleGAN2 [24] trained on the images from
each category in LSUN [55] are used as generative models
and weights are obtained from Shen et al. [47]. The size of
the synthesized images is 256× 256. We use Z-space as the
latent space of the generated model, where the dimension is
512.

A.6. Baseline Methods

Adaptation of Baseline Methods We choose unsuper-
vised disentanglement methods as baselines. Here, we de-
scribe how to adapt them for unknown biased attribute dis-
covery task. First, a trained unsupervised disentanglement
method will predict a set of hyperplanes in the latent space.
Then, we remove the hyperplane whose normal vector has
the largest absolute value of cosine similarity with the normal
vector of ground-truth target attribute hyperplane because it
can be regarded as the predicted hyperplane for the target
attribute. Then, we use each of the remaining hyperplanes to
generate batches of traversal images, feed them to the classi-
fier, and record the average total variation (TV, which will be
introduced in Sec. B) over each batch. The hyperplane with



the largest average TV is selected as the predicted biased
attribute hyperplane.

Results of VAE-based Method We create 480 different
experiment settings in the experiments on disentanglement
datasets, where each setting is a triplet of (target attribute,
biased attribute, generative model). To help readers better
understand how to compute the results for the VAE-based
method, we use the following example to illustrate. Under
the setting (shape, scale, β-VAE), we use the predicted axis-
aligned hyperplane of β-VAE as the prediction for the VAE-
based method. In other words, under each setting, the result
of the VAE-based method depends on the generative model
used in the experiment setting.

A.7. Attributes Preprocessing

We preprocess the attributes’ values in disentanglement
datasets if they are not binary-valued or continuous-valued.
Here we introduce the details of attributes preprocessing.

For shape and category attributes in the disentanglement
datasets, we choose a subset of shapes or categories as the
positive class and others belong to the negative class. There-
fore, we convert the shape and category attributes to binary-
valued attributes. Concretely, for category attribute in Small-
NORB [32], we choose “square” and “ellipse” as the positive
class and “heart” as the negative class. For shape attribute in
dSprites [20], we choose “four-legged animals” and “human
figures” as the positive class and “airplanes,” “trucks,” and
“cars” as the negative class.

A.8. Training Biased Classifiers on Disentangle-
ment Datasets

In order to ensure that the classifier is biased to the cho-
sen biased attribute (i.e., ground-truth biased attribute), fol-
lowing the method in [54], we sample the disentanglement
dataset with skewed distribution to train the classifier. For-
mally, we denote the biased attribute as b and the target
attribute as t. First, for the sampling purpose, we transform
the target attribute and the biased attribute to the binary-
valued attributes if they are continuous-valued attributes. We
achieve this by considering the values less than the medium
value as the positive class and the values greater or equal
than the medium value as the negative class. Note that such
binary-valued attributes are only used for sampling and will
not be used for training. Second, we uniformly sample the
binary value of the target attribute (i.e., t = 0 or t = 1).
Next, we sample the value of the biased attribute based on
the following skewed conditional distribution:

P (b = 0 | t = 1) = S

P (b = 1 | t = 1) = 1− S

P (b = 0 | t = 0) = 1− S

P (b = 1 | t = 0) = S,

where S is the “skewness” of the conditional distribution
for sampling the biased attribute. We set S = 0.9 in all
experiments on the disentanglement dataset. The ablation
study on “skewness” is shown in Sec. C.3. After sampling
the values for the biased attribute and the target attribute,
we use them to uniformly sample the data with the sampled
values in terms of the biased attribute and the target attribute
from the dataset.

B. Evaluation Metric - Total Variation (TV)

B.1. Definition of TV

We also report the results with another evaluation metric
– Total Variation (TV), which is formally defined by:

TV(wb, ob) =
1

N − 1

N−1∑
i=1

|P (̂t | G(zproj + αi+1
wb

||wb||
))

− P (̂t | G(zproj + αi
wb

||wb||
))|.
(9)

Compared with the definition of total variation loss (Eq. 8),
TV removes the − log. Intuitively, TV captures the aver-
aged absolute difference of classifier’s predictions between
each pair of consecutive steps. Therefore, larger TV val-
ues indicate larger variations of target attribute classifier’s
predictions on the traversal images. We add TV metric re-
sults of Tab. 1, 2, 3 in Tab. 4, 5, 6, respectively. We also
report the TV results of the ground-truth biased attribute and
the target attribute hyperplanes on disentanglement datasets
and face image datasets in Tab. 7 and Tab. 8, respectively.
To compute the TV of the target attribute hyperplane, we
replace wb with wt in Eq. 9. Note that the TV values of pre-
dicted biased attribute from all methods are larger than the
TV values of ground-truth biased attribute and ground-truth
target attribute. We believe the reason is that all methods’
predicted biased attribute hyperplanes are not perfectly or-
thogonal w.r.t. the ground-truth target attribute. Hence, both
biased attribute and target attribute will vary in the traversal
images, leading to larger classifier prediction variations than
the ground-truth hyperplanes that only have single-attribute
variations.

B.2. TV as an Unfairness Metric

Note that two cases of biased attribute prediction will
cause large TV values:

1. the prediction is close to ground-truth of the biased
attribute;

2. the prediction is close to the target attribute (i.e., trivial
solution explained in Sec. 4.3).



dataset method | cos⟨ŵb,wb⟩| ↑ | cos⟨ŵb,wt⟩| ↓ ∆cos ↑ %leading ↑ TV

SmallNORB
VAE-based 0.21±0.21 0.16±0.13 0.05±0.20 16.67% 0.15±0.07

Hessian Penalty 0.24±0.16 0.26±0.16 -0.02±0.24 31.67% 0.14±0.05
Ours 0.23±0.18 0.10±0.11 0.12±0.21 51.67% 0.13±0.05

dSprites
VAE-based 0.11±0.14 0.13±0.14 -0.01±0.16 22.00% 0.09±0.05

Hessian Penalty 0.23±0.15 0.25±0.15 -0.02±0.21 41.00% 0.09±0.04
Ours 0.17±0.14 0.13±0.11 0.05±0.18 37.00% 0.07±0.04

Table 4: Tab. 1 in the main paper with Total Variation (TV) results. The TV metric is introduced in Sec. B. We do not bold the
TV results because the baseline methods achieve larger | cos⟨ŵb,wt⟩| (see explanations in Sec. B). The table shows mean and
standard deviation results averaged over all 480 experiment settings on SmallNORB [32] and dSprites [20] datasets. Top-2
results under %leading metric are bolded. ↑: larger value means better result. ↓: smaller value means better result. Note that
∆cos is the major evaluation metric that jointly considers the first two metrics. Our method achieves better performance than
two baseline methods.

LH L⊥ | cos⟨ŵb,wb⟩| ↑ | cos⟨ŵb,wt⟩| ↓ ∆cos ↑ TV

Sm
al

lN
O

R
B 0.25±0.15 0.27±0.18 -0.02±0.23 0.15±0.05

✓ 0.23±0.18 0.10±0.11 0.12±0.21 0.13±0.05
✓ 0.27±0.16 0.28±0.17 -0.01±0.25 0.10±0.03
✓ ✓ 0.25±0.17 0.15±0.13 0.10±0.24 0.10±0.03

dS
pr

ite
s 0.20±0.13 0.21±0.13 -0.01±0.18 0.07±0.04

✓ 0.17±0.14 0.13±0.11 0.05±0.18 0.07±0.04
✓ 0.21±0.13 0.21±0.13 0.00±0.18 0.06±0.04
✓ ✓ 0.21±0.13 0.19±0.13 0.01±0.18 0.06±0.04

Table 5: Tab. 2 in the main paper with Total Variation (TV) results. The TV metric is introduced in Sec. B. The table shows the
ablation study on orthogonalization penalty (L⊥) and Hessian Penalty [44] (LH ). ✓denotes the penalty is used. Note that all
rows used LV . We incorporate LH into our method. Although adding LH helps to improve | cos⟨ŵb,wb⟩|, it seriously harms
the | cos⟨ŵb,wt⟩|. Overall, our final method (second row in each dataset) performs the best in ∆cos.

Therefore, we regard TV as an unfairness metric only
when the method has smaller | cos⟨ŵb,wt⟩| (i.e., nontriv-
ial solution). In other words, larger TV value does not mean
better result if the method also has larger | cos⟨ŵb,wt⟩|. For
example, in Tab. 4, although baseline methods have larger
TV results, they also have larger | cos⟨ŵb,wt⟩|. Therefore,
baseline methods’ biased attribute predictions are not more
unfair than our method, but rather closer to the trivial so-
lution. However, comparing the TV result with Hessian
Penalty on face image datasets in Tab. 6, our method achieves
larger TV and smaller | cos⟨ŵb,wt⟩| simultaneously. There-
fore, on face image datasets, our method not only accurately
predicts the biased attribute with larger unfairness results
(i.e., TV), but also avoids the trivial solution.

C. Ablation Studies

C.1. Ablation Study on Skewed Dataset for Training
Generative Models

In the experiments on the disentanglement datasets, the
distribution of the generative model’s training set is balanced,

meaning that the distribution of the target attribute and the
distribution of the biased attribute are independent of each
other. This setting may not be feasible when such a balanced
training set is unavailable. To study the performance of our
method and the baseline methods when the balanced training
data is unavailable, we train the generative models with the
same skewed distribution (i.e., S = 0.9) in the training
set for training the biased classifier (see Sec. A.8 in this
supplementary material). To obtain accurate ground-truth
for evaluation, we still use the balanced dataset to compute
the ground-truth hyperplanes (method for computing the
ground-truth hyperplanes is shown in Sec. A.3). The results
on SmallNORB [32] dataset are shown in Tab. 10. Our
method outperforms baseline methods in all metrics with
the generative models trained on training data in the skewed
distribution. While baseline methods’ performances become
worse when using the generative models trained on skewed
data, our method can still maintain consistent performances.
The results demonstrate that baseline methods perform worse
when the training data is in a skewed distribution, and our
method can better discover the biased attribute and achieve



method | cos⟨ŵb,wb⟩| ↑ | cos⟨ŵb,wt⟩| ↓ ∆cos ↑ TV

C
el

eb
A LH 0.02±0.02 0.02±0.0003 0.0005±0.02 0.02±0.01

Ours 0.06±0.01 0.002±0.001 0.06±0.01 0.11±0.008

FF
H

Q LH 0.05±0.01 0.01±0.008 0.03±0.004 0.05±0.001
Ours 0.17±0.11 0.002±0.002 0.17±0.11 0.11±0.001

Table 6: Tab. 3 in the main paper with Total Variation (TV) results. The table shows the results on CelebA [34] and FFHQ [23]
datasets. We omit %leading since our method leads in all experiment settings (i.e., %leading (Ours) = 100 %). We bold the TV
results because our method also achieves smaller | cos⟨ŵb,wt⟩| (see explanation in Sec. B).

dataset GT Biased TV GT Target TV

SmallNORB 0.06±0.06 0.05±0.04
dSprites 0.03±0.04 0.04±0.03

Table 7: Total variation (TV) of the ground-truth biased at-
tribute (GT Biased TV) and the ground-truth target attribute
(GT Target TV) on SmallNORB and dSprites datasets.

classifier StyleGAN PGT Biased TV GT Target TV

CelebA CelebA-HQ 0.07 0.05
FFHQ 0.07 0.04

FFHQ CelebA-HQ 0.10 0.04
FFHQ 0.06 0.11

Table 8: Total variation (TV) of the pseudo-ground-truth of
biased attribute (PGT Biased TV) and ground-truth target at-
tribute (GT Target TV) on face image datasets. The first two
columns denote the training datasets of the target attribute
classifier and StyleGAN, respectively.

| cos⟨ŵb,wb⟩| ↑ | cos⟨ŵb,wt⟩| ↓ ∆cos ↑
CelebA 0.08±0.02 0.004±0.002 0.07±0.02
FFHQ 0.08±0.05 0.01±0.005 0.07±0.04

Table 9: Results of different random initializations of biased
attribute hyperplane on face images. The results on two
datasets (CelebA and FFHQ) are averaged over three random
seeds. The generator is StyleGAN pretrained on FFHQ.

better disentanglement w.r.t. the target attribute.

C.2. Ablation Study on Known Attributes

In the orthogonalization penalty, users can provide a set
of known attributes K to exclude the case that the discovered
biased attribute is identical with one of the known attributes.
Here we also show the results on SmallNORB [32] dataset
when known attributes are not provided (i.e., K = ∅) in
Tab 11. The results show that known attributes make per-
formance in | cos⟨ŵb,wb⟩| slightly worse and improve the
performance in | cos⟨ŵb,wt⟩|. We regard that the known

attributes introduce a stronger constraint for discovering the
biased attribute, but they are still helpful for better disentan-
glement w.r.t. the target attribute.

C.3. Ablation Study on Skewness of Distribution of
Data for Training Classifiers

We conduct the ablation study on the distribution of data
for training the classifiers on SmallNORB [32] dataset. As
results shown in Tab. 12, higher skewness (i.e., S) (intro-
duced in Sec. A.8) leads to better results in | cos⟨ŵb,wb⟩|,
indicating that the higher skewness makes it easier for discov-
ering the biased attribute. The results show that our method
can beat baseline methods in both metrics under all skewness
settings.

D. Ablation Study on Differnt Random Initial-
izations of Biased Attribute Hyperplane

To investigate whether our method is sensitive to different
random initialization of biased attribute hyperplanes, we
conduct experiments with three different random seeds on
face images with the same setting introduced in Sec. 5.2.
The mean and standard deviation of results over different
random seeds are reported in Tab. 9, which shows that our
method is robust to different random initializations of biased
attribute hyperplane.

E. Detailed Experimental Results
Quantitative Results in Fig. 3 We show the quantitative
results of the Fig. 3 in Tab. 13. The results prove that our
method can more accurately predict the biased attribute and
keep a better disentanglement w.r.t. the target attribute, which
is also reflected in Fig. 3.

Detailed Results on Face Image Datasets We show the
detailed results of experiments on face image datasets in
Tab. 14. Our method achieves better results in all experimen-
tal settings than the Hessian Penalty method. Especially, our
method can achieve much better results when using the Style-
GAN trained on CelebA-HQ to discover the biased attribute
in the classifier trained on FFHQ (see 6th row in Tab. 14).



distribution method | cos⟨ŵb,wb⟩| ↑ | cos⟨ŵb,wt⟩| ↓ ∆cos ↑ %leading ↑ TV

balanced
VAE-based 0.21±0.21 0.16±0.13 0.05±0.20 16.67% 0.15±0.07

Hessian Penalty 0.24±0.16 0.26±0.16 -0.02±0.24 31.67% 0.14±0.05
Ours 0.23±0.18 0.10±0.11 0.12±0.21 51.67% 0.13±0.05

skewed
VAE-based 0.17±0.18 0.19±0.16 -0.01±0.22 28.33% 0.10±0.04

Hessian Penalty 0.24±0.17 0.29±0.18 -0.04±0.23 11.67% 0.09±0.04
Ours 0.24±0.16 0.13±0.11 0.11±0.17 60.00% 0.09±0.04

Table 10: Ablation study of data distribution of training data for generative models on SmallNORB [32] dataset. “Balanced”
means that the distribution of generative model’s training data is balanced and “skew” denotes that the distribution of generative
model’s training data is skewed (same skewness with the training data of the classifier). For the generative model whose
training set is skewed, the TV results of the ground-truth biased attribute and target attribute are 0.02±0.02, 0.03±0.02,
respectively.

| cos⟨ŵb,wb⟩| ↑ | cos⟨ŵb,wt⟩| ↓ ∆cos ↑ TV

K = ∅ 0.26±0.17 0.12±0.12 0.14±0.21 0.13±0.04
K ̸= ∅ 0.23±0.18 0.10±0.11 0.11±0.22 0.13±0.05

Table 11: Ablation study on the known attributes in the orthogonalization penalty on SmallNORB [32] dataset. K = ∅ means
that the set of known attributes K is not used in orthogonalization penalty and only the target attribute is used. K ̸= ∅ denotes
that all of known attributes and the target attribute are used in orthogonalization penalty.

We suspect that the biased attribute and the target attribute
are less correlated in CelebA-HQ than FFHQ, making it
easier for discovering the biased attribute in the classifier
trained on FFHQ dataset. We also include a discussion on
this in Sec. H.4 and Sec. H.6.

F. Qualitative Results
Here we show more qualitative results on face images

and images from other domains.

F.1. Qualitative Comparisons on Face Images

We show more qualitative comparisons on face images in
Fig. 7. Compared with Hessian Penalty [44], our method can
accurately discover the biased attribute pose while keeping
the disentanglement w.r.t. the target attribute gender. In
contrast, the Hessian Penalty [44] method predicts target
attribute gender in Fig. 7 (a) and Fig. 7 (b), which are trivial
solutions.

F.2. Discovering Other Biased Attributes on Face
Images

By setting all considered attributes as known attributes
in the orthogonalization penalty, our method can discover
biased attributes other than the known attributes. We ad-
ditionally show more results in Fig. 8. Our method can
discover lighting and bald or hair length biased attributes,
which are not the known attributes. We found that the male
images have variations in terms of the bald attribute, and
female images have variations in terms of the hair length

attribute based on the very same predicted biased attribute
hyperplane. Since bald and hair length are all closely related,
we merge them together and regard it as bald or hair length
attribute. We also admit that our method cannot achieve
perfect disentanglement with other attributes such as beard
in the first row of Fig. 8 (a). We will discuss this problem in
Sec. H.6.

F.3. Images from Other Domains

We additionally show more qualitative results on the dis-
covered biased attribute for classifiers on images from other
domains in Fig. 11. Our method can successfully discover
unnoticeable biased attributes such as is Eiffel Tower, layout,
number of beds, buildings in the background, shade of fur
color for tower, conference room, bedroom, bridge, and cat
classifiers, respectively.

G. User Study
We conduct the user study to verify that our method can

find unknown-biased attributes that are difficult for the base-
line method on more images comparable to Fig. 5, 6. Ten
subjects are asked to name the attribute of traversal images
synthesized by LH and our method without knowing the im-
ages are generated by which method. The user can also say
“cannot tell” the attribute from the traversal image (denoted
as “cannot tell” in Fig. 9 and Fig. 10) when the users find
it hard to interpret the variation of the traversal images. If
the user regards multiple attributes in the traversal images,
we ask the users to name the most salient one. For a fair



skewness method | cos⟨ŵb,wb⟩| ↑ | cos⟨ŵb,wt⟩| ↓ ∆cos ↑ %leading ↑ TV

S = 0.99
VAE-based 0.22±0.23 0.16±0.14 0.06±0.22 10.00% 0.14±0.06

Hessian Penalty 0.21±0.17 0.23±0.16 -0.01±0.25 23.33% 0.13±0.04
Ours 0.25±0.19 0.11±0.11 0.14±0.22 48.33% 0.12±0.04

S = 0.95
VAE-based 0.20±0.22 0.15±0.13 0.05±0.20 13.33% 0.14±0.06

Hessian Penalty 0.25±0.17 0.20±0.16 0.05±0.24 35.00% 0.13±0.04
Ours 0.23±0.18 0.10±0.10 0.13±0.21 51.67% 0.12±0.04

S = 0.9
VAE-based 0.21±0.21 0.16±0.13 0.05±0.02 16.67% 0.15±0.07

Hessian Penalty 0.24±0.16 0.26±0.16 -0.02±0.25 31.67% 0.14±0.05
Ours 0.23±0.18 0.10±0.11 0.12±0.21 51.67% 0.13±0.05

S = 0.75
VAE-based 0.20±0.22 0.15±0.13 0.05±0.21 13.33% 0.15±0.07

Hessian Penalty 0.23±0.17 0.19±0.15 0.03±0.25 40.00% 0.14±0.05
Ours 0.23±0.18 0.11±0.10 0.12±0.21 46.67% 0.13±0.04

Table 12: Ablation study on the skewness of distribution of data for training the classifiers on SmallNORB [32] dataset.
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Figure 7: Additional qualitative comparison of the traversal images of predicted biased attributes synthesized by StyleGAN [23]
trained on FFHQ [23] dataset. Numbers below the image is the predicted probability of “male” from the gender classifier.
The training datasets of the target attribute classifier of (a) and (b) are FFHQ and CelebA, respectively. The Hessian Penalty
method predicts gender as the biased attribute, which is a trivial solution for a gender classifier. In (b), although the traversal
images from Hessian Penalty also vary in terms of the skin tone attribute, it has very little variation in terms of the classifier’s
prediction (i.e., 0.47 to 0.47). In comparison, our method can correctly predict the pseudo-ground-truth biased attribute pose
on two datasets.

method | cos⟨ŵb,wb⟩| ↑ | cos⟨ŵb,wt⟩| ↓ ∆cos ↑ TV

Sm
al

lN
O

R
B VAE-based 0.08 0.19 -0.12 0.16

LH 0.14 0.33 -0.19 0.18
Ours 0.13 0.07 0.06 0.13

dS
pr

ite
s VAE-based 0.08 0.17 -0.10 0.05

LH 0.08 0.53 -0.45 0.05
Ours 0.05 0.04 0.01 0.01

Table 13: Quantitative results of qualitative results shown in
Fig. 3.

comparison, we use the same sampled latent vector z for
two methods to synthesize traversal images (40 face traver-
sal images, 40 other-domain traversal images). To further
let the Hessian Penalty method find other biased attributes,

we remove |K| (cardinality of set K) predicted hyperplanes
which are top-|K| similar (i.e., high absolute value of cosine
similarity) with the known-biased attributes K, which is a
similar procedure as we introduce how to adapt the baseline
method in Sec. A.6. After collecting the user study results,
we compute the percentage of each attribute named by the
user. For example, “68%” of the bald / hair length attribute
of our method in Fig. 9 (a) means that among all the named
attributes on the traversal images generated in the experiment
setting (a), 68% of them are bald / hair length attributes. All
other attributes that are rarely named by the users are merged
into “others” in Fig. 9 and Fig. 10.

Discovered Other Biased Attributes on Face Images
The results of the user study on finding other biased at-



classifier StyleGAN method | cos⟨ŵb,wb⟩| ↑ | cos⟨ŵb,wt⟩| ↓ ∆cos ↑ TV

CelebA
CelebA-HQ LH 0.0007 0.02 -0.02 0.007

Ours 0.07 0.001 0.07 0.11

FFHQ LH 0.04 0.02 0.02 0.03
Ours 0.05 0.003 0.05 0.12

FFHQ
CelebA-HQ LH 0.03 0.007 0.03 0.05

Ours 0.28 10−5 0.28 0.11

FFHQ LH 0.06 0.02 0.03 0.05
Ours 0.06 0.004 0.06 0.11

Table 14: Detailed results of each experiment setting on face images. The first two columns denote the training datasets of the
target attribute classifier and StyleGAN, respectively. Our method beats the baseline method under every experiment setting.
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(a) Discovered biased attribute: lighting.

(b) Discovered biased attribute: bald or hair length.
Figure 8: Additional qualitative results on discovered biased
attributes by setting the set of known attributes K to all
considered attributes generated by StyleGAN [23] trained
on FFHQ [23] dataset. The target attributes of (a) and (b)
is gender. The target attribute classifiers in (a) and (b) are
trained on CelebA and FFHQ, respectively. Our method can
successfully discover lighting and bald or hair length biased
attributes.

tributes on face image datasets are shown in Fig. 9. For the
Hessian Penalty method, by looking at the largest percentage
among all attributes, most users agree that it still predicts
the known biased attribute pose in experiment settings (a)
and (d), and the users cannot tell the attribute in experiment
setting (b). Although the Hessian Penalty can predict one
unknown biased attribute lighting in experiment setting (c),
its percentage (34%) is still lower than the percentage of skin
tone attribute (36%) predicted by our method. In the other

three experiment settings (a), (b), and (d), by looking at the
largest percentage among all attributes, most users agree that
our method predicts bald / hair length and lighting biased
attributes. In conclusion, our method can find the biased
attributes that are difficult for the baseline method.

Discovered Biased Attributes on Images from Other Do-
mains We conduct the user study on four categories of
images: cat, tower, conference room, and bedroom. The
results of the user study on discovered biased attributes on
images from other domains are shown in Fig. 10. For the
Hessian Penalty method, the named attributes are either uni-
formly distributed (see Hessian Penalty results in Fig. 10
(a) (b)), or the user cannot tell the attributes from the traver-
sal images (see Hessian Penalty results in Fig. 10 (b) (d)).
Hence, it is hard to tell the biased attribute from the traversal
images synthesized by the Hessian Penalty’s biased attribute
prediction. In contrast, by looking at the largest percentage
numbers, most users agree that our method can find shade
of fur color, is Eiffel Tower, layout, and number of beds bi-
ased attributes, meaning that users can easily tell the biased
attribute from the traversal images generated by our method.
In conclusion, our method can better discover the biased
attributes in diverse domains of images, which are hard to
be found by the baseline method.

H. Discussion
H.1. Why | cos⟨ŵb,wb⟩| results on face image

datasets are smaller than the ones on disen-
tanglement datasets?

One may question why the | cos⟨ŵb,wb⟩| results on the
faces image datasets (Tab. 3) are smaller than the results on
disentanglement datasets (Tab. 1). We suspect two reasons
for it. First, the numbers of latent space dimensions used
in the two experiments are different (512 vs. 10). It would
be more difficult for face image experiments to optimize in
latent space with larger dimensions (512). Second, discover-



bald/hair length lighting pose cannot tell others
0

10

20

30

40

50

60

70

P
er

ce
nt

ag
e 

of
 th

e 
N

am
ed

 A
ttr

ib
ut

e 68%

4%
0%

12%
16%

0%
6%

46%
40%

8%

(a) Classifier: FFHQ; StyleGAN: CelebA-HQ

Hessian Penalty
Ours

bald/hair length beard lighting cannot tell others
0

10

20

30

40

50

60

70

P
er

ce
nt

ag
e 

of
 th

e 
N

am
ed

 A
ttr

ib
ut

e

52%

12%

4%

28%

4%4%
0%

18%

72%

6%

(b) Classifier: FFHQ; StyleGAN: FFHQ

Hessian Penalty
Ours

age skin tone lighting pose cannot tell others
0

10

20

30

40

P
er

ce
nt

ag
e 

of
 th

e 
N

am
ed

 A
ttr

ib
ut

e 42%

36%

4%
0% 0%

18%

6%

12%

34%

24%

6%

18%

(c) Classifier: CelebA; StyleGAN: CelebA-HQ

Hessian Penalty
Ours

lighting bald/hair length beard pose cannot tell others
0

10

20

30

40

50

P
er

ce
nt

ag
e 

of
 th

e 
N

am
ed

 A
ttr

ib
ut

e 50%

16%

10%

0%

6%

18%18%

10% 10%

40%

6%

16%

(d) Classifier: CelebA; StyleGAN: FFHQ

Hessian Penalty
Ours

Figure 9: User study on face images. Four bar charts correspond to four experiment settings on face images. The title of
each chart denotes the experiment setting. For example, “Classifier: FFHQ; StyleGAN: CelebA-HQ” means that the target
attribute classifier is trained on FFHQ, and the StyleGAN is trained on CelebA-HQ. In each bar chart, the x-axis is the attribute
named by the users. The y-axis is the percentage of the attribute out of all named attributes by users. A higher percentage
means that users agree more on that attribute. The attributes in green are out of the known-biased attribute set K. Attributes in
green with higher percentages and the attributes in black with lower percentages mean that the method can better find the
unknown attributes. In experiment settings (a), (b), and (d), all users agree that our method find the biased attribute bald/hair
length, whereas the Hessian Penalty method can only find known-biased attribute pose (in (a), (d)), or users cannot tell the
attribute (see “cannot tell” in (b)). In the experiment setting (c), although the top-1 named attribute is a known attribute age,
the named attribute with the second largest percentage is skin tone, whose percentage is still larger than the percentage of the
top-1 attribute lighting from the Hessian Penalty method. We suspect the reason is that our method does not achieve perfect
disentanglement between age and skin tone. In conclusion, our method can better find other unknown biased attributes than
the Hessian Penalty method in all experiment settings on face images.

ing the biased attribute on face image datasets is harder than
identifying biases on disentanglement datasets because the
former datasets are in-the-wild datasets, whereas the latter
synthetic datasets only contain finite sets of attributes.

H.2. Why use ∆cos as the major evaluation metric?

One may ask that why we use ∆cos as the major eval-
uation metric. The reason is that our ultimate goal is to let
the human interpret the biased attribute from the traversal
images (see Fig. 1 (b)). Suppose that the traversal images
contain the variations of two attributes: the biased attribute
and the target attribute. In this case, although the classifier
has large prediction variations among the traversal images,
humans still cannot decide which attribute (biased attribute
or target attribute) is the real cause for the prediction varia-
tions. Therefore, it would be better for humans to make a

causal conclusion if the traversal images only contain the
variation of the biased attribute and do not contain the varia-
tion of the target attribute.

H.3. “Small” Variation

One may regard the variation of predicted probabilities
that do not switch the 0.5-threshold (e.g., 0.48 to 0.35 in
Fig. 8) are “small” for a binary classifier. However, we
believe such “small” variation is still value for the unknown
bias discovery task for the following reasons:

First, such variations still break the fairness criterion.
Second, we do not think switching 0.5 threshold is neces-
sary because 1) a larger threshold may be required for some
safety-critical scenarios; 2) when a classifier needs to give
the ranking of different input images (such as image retrieval
task) based on the predicted probability, the threshold is not
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Figure 10: User study on other domains of images. Four bar charts correspond to four image domains (see titles of each chart).
In each bar chart, the x-axis is the attribute named by the users. The y-axis is the percentage of the attribute out of all named
attributes by users. A higher percentage means that users agree more on that attribute. The user study results show that the
biased attributes predicted by the Hessian Penalty method are either uniformly distributed or cannot be told by the users (e.g.,
“cannot tell” in (b) and (d)). In contrast, the biased attributes from our method are more concentrated on the one attribute (e.g.,
shade of fur color). In conclusion, our method can better find the unknown biased attributes in diverse domains of images than
the Hessian Penalty method.

needed, and the biased ranking may still lead to unfairness
issue; 3) in a multi-class classification setting (i.e., exper-
iments on other domains of images), the threshold is not
0.5 and such “small” variation can alter the classifier’s top-1
prediction. Third, such “small” variations can still provide
insights to dataset curators to mitigate such biases, which
could be learned by other networks.

H.4. Discussions on Orthogonalization Penalty

One may worry that the orthogonalization penalty may
prevent the method from finding the biased attribute highly
correlated with the target attribute, based on the assumption
that the high correlation in the training set of the classifier
leads to a high absolute value of cosine similarity between
the biased attribute normal vector and the target attribute
normal vector in the latent space of the generative model.
For example, if the hair length biased attribute is highly
correlated with the target attribute gender in the training
set of the classifier (e.g., “long hair female” and “short hair
male” are overrepresented in the dataset), one may think that
L⊥ may prevent our method from finding the hair length
attribute hyperplane due to its high absolute cosine similarity
with gender attribute hyperplane. We list our arguments and

possible solutions to this question by the following points:
First, L⊥ is a soft penalty instead of a strict constraint,

which still allows the correlation between the predicted bi-
ased attribute and the target one. In fact, we tried strict con-
straint but it is hard to optimize, which fails to predict biased
attribute, resulting in low | cos⟨ŵb,wb⟩| values. That is also
reflected by the ablation study on the soft orthogonalization
penalty in Tab. 2, where even adding the soft orthogonaliza-
tion penalty has already decreased the | cos⟨ŵb,wb⟩| results.
Hence, the proposed soft orthogonalization penalty is still
better than the strict orthogonalization constraint for solving
the aforementioned issue.

Second, the ablation study on the skewness of the genera-
tive model’s training data (Sec. C.1) has already proved that
our method can still accurately predict the biased attribute
even if the generative model’s training data has the same
skewness of classifier’s training data (see results in Tab. 10).
Note that the performance of two baseline methods drops
when using the generative model trained on skewed data,
whereas our method still maintains high performance.

Third, we observe that using a more disentangled latent
space (e.g., W-space of StyleGAN) of the generative model
can also mitigate this issue. We tried using the input noise



space (Z-space) of the StyleGAN on face images, which has
much lower results than using the W-space of StyleGAN.
For example, our method finds the bald / hair length biased
attribute in the W-space of StyleGAN, and we do not find
such attribute in the Z-space. As explained in Sec. 4 of
the StyleGAN [23] paper, compared with the input noise
space (Z-space), W-space is a more disentangled latent
space, where hyperplanes are less correlated. Hence, using
a more disentangled latent space can also address the issue
mentioned above.

Fourth, the assumption that attributes are highly corre-
lated in the latent space may not hold when the training
datasets of the generative model and the classifier are dif-
ferent. In other words, the biased attribute hyperplane may
not be highly correlated with the target attribute hyperplane
when the generative’s model training data has a weaker skew-
ness between the biased attribute and the target attribute.

Finally, another solution to the issue is using a generative
model that trained on only one value of the target attribute.
For example, as we did in the experiment on other domains
of images (Sec. 5.3), we only use LV and do not use L⊥
because the target attribute value will not change among
the synthesized images (i.e., a cat generator will only syn-
thesize cat images, and will never synthesize dog images.).
Although more generators need to be trained for each target
attribute value, this could be another solution to the afore-
mentioned problem as no target attribute exists in the gener-
ator’s latent space, not to mention the correlation between
the biased attribute and the target attribute.

H.5. Related Methods and Areas

The proposed unknown biased attribute discovery task
can benefit many related methods and areas:

First, many supervised algorithmic de-biasing meth-
ods [54] require the well-defined biased attribute (or pro-
tected attribute) and corresponding labels to mitigate biases.
The discovered unknown biases can serve as the definition
of the biased attribute, and the corresponding labels can be
further collected by humans.

Second, our method can also benefit dataset curation and
audition process. The biases in the image classifiers may
originate from the training data of the classifier. Therefore,
users can balance the distribution of the dataset based on the
discovered unknown biases to mitigate the dataset bias [49].

Third, our method also provides a unique perspective for
the area of disentanglement methods. As discussed in [36],
unsupervised disentanglement is theoretically impossible,
and future works should explicitly present the inductive bi-
ases and weak supervision used in the framework. From a
disentanglement perspective, our method empirically proves
that the biases in a down-stream classifier can serve as a
weak prior for finding the biased attribute in the latent space
of the generative model.

Finally, our work can also give a new research direction
to the adversarial attack methods [17, 37]. While most adver-
sarial attack methods focus on adding uninterpretable pixel
perturbation to the image, our method uses the traversal im-
ages to find the interpretable vulnerability of the deep neural
networks.

H.6. Limitations and Future Direction

We honestly list some limitations of our method.
First, we do not achieve perfect disentanglement on in-

the-wild datasets. For example, in Fig. 8, the discovered
biased attribute lighting is entangled with the attribute beard.
A possible solution is to obtain more hyperplanes of known
attributes (e.g., the beard attribute) for orthogonalization
penalty.

Second, we admit that the biased attributes’ searching
space is decided by the coverage of attributes of the gener-
ative model’s training data. However, we believe that this
will not be a serious problem as long as the users can access
either the same training data used by the classifier or even
larger and diverse unlabeled datasets to train the generative
model.

Lastly, our method only focuses on detecting one biased
attribute at a time, while the target attribute could be affected
by multiple biased attributes in real-world settings. A possi-
ble solution is extending our method by jointly optimizing
multiple orthogonalized biased attribute hyperplanes.

The future directions of unknown biased attribute dis-
covery task could be tackling our method’s aforementioned
limitations. In this work, we only study the counterfactual
fairness criterion [12, 13, 21, 31]. Future works can explore
more fairness criteria to define the biased attribute. One
interesting direction is to discover unknown biases from ob-
ject detectors or semantic segmentation networks rather than
classifiers.

Furthermore, we base our method on recent advances
in generative models that can synthesize photo-realistic im-
ages of faces, objects, and simple scenes. However, to the
best of our knowledge, no generative models can synthesize
photo-realistic images of complex scenes containing various
objects and stuff (e.g., images from MS-COCO dataset [33]).
Developing methods for discovering unknown biases for
models learned from complex scene images is a challenging
but valuable research direction for unknown biased attribute
discovery task.
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(a) tower. Discovered biased attribute: is Eiffel Tower.

(b) conference room. Discovered biased attribute: layout.

(c) bedroom. Discovered biased attribute: number of beds.

(d) bridge. Discovered biased attribute: buildings in the background.

(e) cat. Discovered biased attribute: shade of fur color.

Figure 11: Additional qualitative results on the discovered biased attribute of classifiers for classifying tower, conference room,
bedroom, bridge, and cat images. Numbers below images are predicted probability by the classifier.


