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Figure 1: Comparisons of efficiencies between the trimming operator and the Huber-skip estimator under different setups.

1. More analysis of the Huber-skip estimator
We have used the Huber-skip estimator for determining

the number of inliers k as described in Sec. 3.3 of the main
paper. In this supplementary material, we present more
experiments to demonstrate the properties of the adopted
Huber-skip estimator.

1.1. Comparisons of efficiency between the trim-
ming operator and the Huber-skip estimator

We conduct Monte Carlo experiments to study the sta-
tistical efficiencies of the 50%-trimming operator and the
Huber-skip estimator on the least trimmed square problem.
We follow the common setup used in [2, 3] to test their re-
spective efficiencies under the following conditions:

• Different dimensions of the regression variable x: We
increase the dimension of x from 3 to 43 with a step
size of 2.

• Different numbers of data: We increase the number of
data from 100 to 2000 with a step size of 100.

• Different ratios of outliers: We increase the ratio of
outliers from 0 to 0.5 with a step size of 0.025.

All the data is randomly generated and corrupted by the
Gaussian noise N (0, 0.1I). The control variables in each
trial are set to 20 for the dimension of the regression variable,
2000 for the number of data, and 0.4 for the ratio of outliers.
Each sub-setup (e.g., efficiency w.r.t. a specific dimensional
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Figure 2: Registration accuracy w.r.t. distinct thresholds of
the Huber-skip estimator.

regression variable) is repeated 100 times and their mean
value is used as the final result. The results are presented
in Fig. 1. As shown, the Huber-skip estimator can achieve
significantly higher efficiencies than the trimming operator
in all conditions.

1.2. Threshold of the Huber-skip estimator

In general, the Huber-skip estimator performs stably un-
der varying thresholds since it only affects the statistical
efficiency. For demonstration, we conduct tests on the point
cloud registration task. The experimental setup is the same
as the experiment with different initializations except that
the ground-truth rotation is fixed to 15◦ in Euler angles. The
two point clouds are registered with a varying threshold in
the range of 1 to 4 with a step size 0.2. The results are
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Figure 3: Comparisons between SLR and GSLR on register-
ing outlier-contaminated point clouds.
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Figure 4: Registration results of SLR and GSLR on outlier-
contaminated partially overlapped point clouds. Green
points are the outliers.

presented in Fig. 2, where the estimations of competing
methods are reported for reference. As shown, GSLR can
consistently provide more accurate estimations compared
to the others under varying thresholds. Although a smaller
threshold may provide slightly more accurate results by re-
jecting more matches, it may not be a good choice for tasks
like shape matching, which desires to keep as many bijective
correspondences as possible. Therefore, we consider the
threshold of 3.5 suggested in [3] as a reasonable choice for
general applications.

2. Complementary experiments and details of
experimental setup

In this section, we provide more experiments as well as
the details of our experimental setup to complement Sec. 5
of the main paper.

2.1. More comparisons between SLR and GSLR

We carry out experiments on the registration task to
further demonstrate the different capacities of SLR and
GSLR. The experimental setup is the same as the outlier-
contaminated one mentioned in the main paper. Figure 3
reports the results. As demonstrated, GSLR can present more
accurate estimations compared to SLR, especially when the
ratios of outliers are large. Furthermore, we also conduct a
test on registering point clouds that not only contain noise
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Figure 5: Registration accuracies w.r.t. different scales of
noise and ratios of outliers.

and outliers but also are partially overlapped. As presented
in Fig. 4, SLR obviously mis-aligns the point clouds while
GSLR can effectively maintain the accuracy.

2.2. Registration w.r.t. varying scales of noise and
ratios of outliers

We have also tested the registration accuracies w.r.t. dif-
ferent scales of noise and ratios of outliers. Both of the ex-
periments are under the same setup as mentioned in Sec. 1.2.
As presented in Fig. 5, our GSLR can consistently provide
more accurate estimations compared to other approaches.

2.3. More details of the experimental setup

Point cloud registration For each pair of synthetic point
clouds used in the outlier-contaminated and distinctly initial-
ized experiments, we perturb them with isotropic Gaussian
noises N (0, 1.5e-3I) and N (0, 2.5e-3I). Similarly, for the
partial-overlapping tests, we set the scaling of covariances
associated to the cropped point clouds to 1e-3, 1.5e-3, 2e-3,
and 2.5e-3, respectively. For the competing methods, we
follow the suggestion of the CPD paper [4] and set the trim-
ming ratio of Trim-ICP, as well as the weights of the uniform
distributions in CPD and FilterReg to 0.5, representing a
breakdown point of 0.5. For FGR on the synthetic data, we
set the voxel size to the average resolution of the two input
point clouds. For the real-world data, we set the voxel size
to 0.1 to let FGR perform better, leading to approximately
200k points in each point cloud. Regarding the codes used
in the experiments, ICP and Trim-ICP are implemented by
ourselves in Python, FGR is from the Open3D library [6],



Mean Median

R t R t
ICP 1.05 4.80e-3 1.04 4.67e-3

Trim-ICP 1.07 3.69e-3 1.09 3.49e-3
SVR 1.05 3.00e-3 0.99 2.67e-3
CPD 1.58e-2 4.22e-4 1.52e-2 4.00e-4

FilterReg 2.19e-2 4.84e-4 1.69e-2 4.99e-4
FGR 8.53e-2 1.57e-3 7.21e-2 1.10e-3

GSLR (ours) 6.22e-3 1.63e-4 5.64e-3 1.18e-4

Table 1: Rotational and translational errors on outlier-
contaminated point clouds as mentioned in Fig. 3 of the
main paper.

Mean Median

R t R t
ICP 1.69e-1 1.04e-2 1.19e-1 8.43e-3

Trim-ICP 8.56e-1 3.81e-2 8.54e-1 4.83e-2
SVR 2.15e-1 7.14e-3 1.71e-1 4.94e-3
CPD 8.99e-2 5.66e-3 9.06e-2 3.75e-3

FilterReg 1.11e-1 6.22e-3 9.88e-2 3.89e-3
FGR 1.07 3.74e-2 1.12 3.18e-2

GSLR (ours) 6.49e-2 4.01e-3 3.76e-2 1.93e-3

Table 2: Rotational and translational errors on partially over-
lapped point clouds as mentioned in Fig. 3 of the main paper.

Mean Median

R t R t
ICP 5.15e-2 5.63e-1 1.17e-2 1.65e-1

Trim-ICP 9.22e-2 1.60 7.00e-2 1.54
SVR 1.02e-2 3.01e-1 2.23e-3 1.97e-1
CPD 3.22e-3 4.97e-1 2.65e-3 1.22e-1

FilterReg 6.54e-2 7.46e-1 6.30e-2 6.58e-1
FGR 6.54e-2 1.21 6.00e-2 1.06

GSLR (ours) 7.05e-3 1.38e-1 4.23e-3 1.12e-1

Table 3: Rotational and translational errors on real-world
point clouds as mentioned in Fig. 5 of the main paper.

and the others are from the ProbReg Python library1.
In the main paper, we have only provided transforma-

tional errors due to space limitation. Therefore, we present
the detailed rotational and translational results in Tables 1, 2,
and 3. For the synthetic data, our GSLR formulation cham-
pions both rotational and translational estimations. For the
real-world data, since the repeated patterns mainly lie in the
parallel arches, FGR fails to present reasonable translations

1ProbReg: http://probreg.readthedocs.io/. Last accessed
on Jul. 24, 2021.

Elapsed time (second)
FMAP 20.48

FMAP+ICP 20.72
FMAP+BCICP 246.08
FMAP+ZO-50 20.53
FMAP+ZO-100 24.53

FMAP+GSLR (ours) 233.74

Table 4: Average elapsed time of the shape matching task.

Elapsed time (second)
ICP 9.76

Trim-ICP 9.47
SVR 2.01
CPD 25.02

FilterReg 0.31
FGR 0.29

GSLR (ours) 122.61

Table 5: Average elapsed time of the registration task.

although the estimated rotation is acceptable. Among the
other methods, although GSLR presents slightly larger errors
on rotation compared to the others, it can provide much more
accurate results on translation. Consequently, as shown in
the main paper, GSLR outperforms the others in estimating
the overall transformations.

Shape matching We set the parameters of the direct opera-
tor [5] and the wave kernel signature (WKS) [1] as suggested
in their respective papers. For post-processing, every algo-
rithm is iterated 5 times, which we observe as enough to
achieve accurate results. All the source codes we use are
released by their respective authors.

2.4. Elapsed time of point cloud registration and
shape matching

We hereby present the elapsed time on the registration and
shape matching tasks. For shape matching, we record the
average runtime of the 30 trials on the TOSCA dataset. All
the tests are conducted on a desktop with an Intel i9-9900K
CPU and 32GB RAM. The results are presented in Table 4.
For registration, we record the average runtime of the 60
trials of the differently initialized experiment. The results
are shown in Table 5. As shown, for the shape matching
task, our GSLR algorithm consumes similar time to the
suboptimal BCICP approach. For registration, although our
GSLR algorithm consumes more time than the others, we
consider this higher runtime as a minor deficiency since there
always exist applications that focus more on accuracies and
do not require real-time ability. Moreover, as mentioned
in the main paper, there already exist significantly faster



GPU-accelerated Hungarian algorithms, and applying them
to GSLR is just an engineering practice.
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