
Supplementary Material for Image Synthesis from Layout with Locality-Aware
Mask Adaption

Zejian Li1 , Jingyu Wu1 , Immanuel Koh2 , Yongchuan Tang1 , Lingyun Sun1,3

1Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Zhejiang University
2Singapore University of Technology and Design

3Collaborative Innovation Center of AI by MOE and Zhejiang Provincial Government
{zejianlee, wujingyu}@zju.edu.cn, immanuel_koh@sutd.edu.sg, {yctang, sunly}@zju.edu.cn

Abstract

This supplermentary material introduces more details of
our layout-to-image model (Secition S1), discusses several
topics of our model (Seciton S2) and presents more experi-
mental results (Section S3).

S1. Method
In this section, we provide more detailed description

of our proposed method, including mask generation (Sec-
tion S1.1), mask-to-image generation (Section S1.2) and the
training loss (Section S1.3).

S1.1. Mask Generation

In the layout-to-image pipeline, a semantic mask is gen-
erated first. To form a raw segmentation mask, the masks
of objects are generated separately and mapped to bound-
ing boxes. We assume that object masks are affected by the
categories and the sizes with stochastic variations. An ob-
ject mask indeed represents the object shape in the bound-
ing box, and a reasonable shape may be related to the width
and height. Given a slim and small bounding box with the
class “person”, its shape tends to be a whole human body.
But given a nearly squared and big bounding box, the “per-
son” may be in a close shot and the shape tends to be an
upper half body. This insight drives us to consider box size
in object mask generation.

Formally, for the ith object, wi denotes the width of
the bounding box bi and hi denotes the height. The cat-
egory ci is embedded as a latent vector yi ∈ Rdy , and
zi ∈ Rdz represents stochastic variation. The generator of
object masks Fom : Rd 7→ (0, 1)32×32 takes the concatena-
tion oi = [yi, zi, wi, hi] (object feature) as input and gives
an object mask of size 32×32. We define d = dy+dz+2,
dy = dz = 128. Our implementation is built on top of
LostGAN-V1 [29].

The architecture of Fom mainly consists of several
ResNet [8] blocks and a sigmoid operator to transform the
input vector to an object mask. Given a set of object features
O = [o1, . . . , om], the generator Fom gives the mask of m
objects, which are resized and mapped to the correspond-
ing bounding boxes to form the raw mask M̃ as shown in
Figure 3 in the main paper.

The raw mask is adapted with our proposed Locality-
Aware Mask Adaption module. We summarize the Py-
Torch [25] pseudo code of our LAMA in Figure S1. To
reduce the computational cost, we resize the raw mask to
64 × 64 in the adaption, and the scaling factors are resized
back to H ×W and applied to the raw mask.

S1.2. Mask-to-Image Generation

In this stage, an image is synthesized according to the
generated mask. Formally, given the mask M , the object
features O and a image variation zimg , the mask-to-image
generation module gives an image accordingly. The image
variation zimg ∈ Rdz is to capture image style.

Our ResNet block. The mask-to-image generator stacks
serval ResNet [8] blocks, whose architecture is shown in
Figure S2. The block has a pre-activation [9] architecture,
with Batch-Group Normalization to injection mask and cat-
egory information. OT ⊗M means the object features are
aggregated in pixels.

Batch-Group Normalization. We use Batch-Group Nor-
malization (BGN) to utilize information aross channels
when the batch size is small. Given a batch-normalized [13]
feature x̂(BN) and a group-normalized [34] one x̂(GN),
BGN gives the feature x̂(BGN) as

x̂(BGN) =
(
ρ · x̂(BN) + (1− ρ) · x̂(GN)

)
· γ + β (1)

Here ρ ∈ [0, 1] controls the weight of two normalizations,
initialized as 0.1. The modulation parameters γ and β

1

import torch
from torch.nn import functional as F
def LAMA(self, raw_mask, obj_feat):

raw_mask: the raw semantic masks with shape [b,m,H,W]
obj_feat: the object features to generate masks with shape [b, m, d]
b is the batch size, m the number of object and H, W height and width.

b, m, H, W = raw_mask.size()
obj_feat = obj_feat.view(b ∗ m, −1)
object key
obj_key = self.fc_key(obj_feat).view(b, m, −1)
transposed object query
obj_query = self.fc_query(obj_feat).view(b, m, −1).permute(0, 2, 1)

resize the raw mask to 64 ∗ 64
resized_raw_mask = F.interpolate(raw_mask, size=(64, 64)).view(b, m, 64 ∗ 64)
calculate pixel query in Eq (2)
pixel_query = torch.bmm(obj_query, resized_raw_mask).view(b, −1, 64, 64)
calculate local query with ResNet blocks
local_query = self.res_blocks(pixel_query).view(b, −1, 64 ∗ 64)

Eq (3)
E = torch.bmm(obj_key, local_query).view(b, m, 64, 64)
calculating scaling factors in Eq (4)
factors = F.tanh(E ∗ self.alpha) + 1
resize factors back to H ∗ W
factors = F.interpolate(factors, size=(H, W))
apply the factors in Eq (1)
adapted_mask = raw_mask ∗ factors

normalization
adapted_mask = F.normalize(adapted_mask, p=1, dim=1)

return adapted_Mask

Figure S1. Python code of LAMA based on PyTorch [25].

are transformed from OT ⊗ M , as suggested by ISLA-
norm [30]. The Batch-Group Normalization is inspired by
Batch-Instance Normalization [24]. It is different from a re-
cent work with the same name [40], who normalizes feature
in groups of channels across a batch.

Noise Injection [14]. Noise injection is to add spatially-
uncorrelated Gaussian noise to hidden feature maps after
each convolution. The noise is in single-channel and broad-
casted to all channels using learned deviations. Thus we
encourage the deviations to be non-negative with the soft-
plus operation. The noise injection is to provide intermedi-
ate stochasticity for each layer to adopt and thus enrich the
hidden features.

ReZero [1]. ReZero is to smooth gradients in the early
stage of training and accelerate the convergence. It designs
a parameter τ initialized as 0, which scales the result of
the main transformation in the ResNet. Formally, given a
hidden feature X and a transformation F , ReZero gives a
result as

X + τ ×F(X) (2)

As τ can be absorbed by convolutions in F , it does not
affect the final solution.

The whole generator. The generator takes zimg as input,
and gradually enriches the hidden features with the stacked
ResNet blocks. Finally, the hidden features are transformed
into the image with a tanh function. Our implementation is
built on top of LostGAN-V1’s generator [29].

S1.3. Loss

We use the adversarial training strategy [6, 22] to train
our layout-to-image generation model with a discrimina-
tor D. The discriminator has two branches, the image
branch Dimg and the object branch Dimg . The discrimi-
nator consists of ResNet [8] blocks with Spectral Normal-
ization [22] to form the image branch Dimg . To classify ob-
jects in bounding boxes L, the object branch Dobj uses ROI
Align [7] to extract feature maps and identifies the objects
with a projection discriminator [23]. The whole training
loss consists of the adversarial hinge loss and a classifica-
tion loss (3).

L =Limg + Lobj

Limg =Ex∼Pd
min(0, 1−Dimg(x))

+Ex∼Pg min(0, 1 +Dimg(x))

Lobj =Ex∼Pd
min(0, 1−Dobj (x, L))

+Ex∼Pg min(0, 1 +Dobj (x, L))

(3)

Batch-Group
Normalization

LeakReLU

ModulationOT ⌦ M
<latexit sha1_base64="DGSycGXJREXTKR/VcYMNSI992A4=">AAACGXicbVDLSsNAFJ3UV62vqEs3g0VwVZIq6LLoxo1YoS9oYplMJ+3QSSbMTIQS8htu/BU3LhRxqSv/xkmaRW29MMzhnHu55x4vYlQqy/oxSiura+sb5c3K1vbO7p65f9CRPBaYtDFnXPQ8JAmjIWkrqhjpRYKgwGOk602uM737SISkPGypaUTcAI1C6lOMlKYGpuV4nA3lNNBfcpc+OAFSY+knrRQ6XNGASDjfcZsOzKpVs/KCy8AuQBUU1RyYX86Q4zggocIMSdm3rUi5CRKKYkbSihNLEiE8QSPS1zBEeqeb5Jel8EQzQ+hzoV+oYM7OTyQokJk13ZkbX9Qy8j+tHyv/0k1oGMWKhHi2yI8ZVBxmMcEhFQQrNtUAYUG1V4jHSCCsdJgVHYK9ePIy6NRr9lmtfn9ebVwVcZTBETgGp8AGF6ABbkATtAEGT+AFvIF349l4NT6Mz1lryShmDsGfMr5/AbCVofc=</latexit>

Upsampling 2x

Conv 3x3

Noise Injection

Batch-Group
Normalization

LeakReLU

Modulation

Conv 3x3

OT ⌦ M
<latexit sha1_base64="DGSycGXJREXTKR/VcYMNSI992A4=">AAACGXicbVDLSsNAFJ3UV62vqEs3g0VwVZIq6LLoxo1YoS9oYplMJ+3QSSbMTIQS8htu/BU3LhRxqSv/xkmaRW29MMzhnHu55x4vYlQqy/oxSiura+sb5c3K1vbO7p65f9CRPBaYtDFnXPQ8JAmjIWkrqhjpRYKgwGOk602uM737SISkPGypaUTcAI1C6lOMlKYGpuV4nA3lNNBfcpc+OAFSY+knrRQ6XNGASDjfcZsOzKpVs/KCy8AuQBUU1RyYX86Q4zggocIMSdm3rUi5CRKKYkbSihNLEiE8QSPS1zBEeqeb5Jel8EQzQ+hzoV+oYM7OTyQokJk13ZkbX9Qy8j+tHyv/0k1oGMWKhHi2yI8ZVBxmMcEhFQQrNtUAYUG1V4jHSCCsdJgVHYK9ePIy6NRr9lmtfn9ebVwVcZTBETgGp8AGF6ABbkATtAEGT+AFvIF349l4NT6Mz1lryShmDsGfMr5/AbCVofc=</latexit>

Upsampling 2x

Conv 1x1

⇥⌧
<latexit sha1_base64="FMfsSqTk5OWNd0mxCVzIYgyaxgY=">AAAB8nicbVDLSsNAFJ34rPVVdelmsAiuQlKrpruiG5cV7AOSUCbTSTt0kgkzN0Ip/Qw3LhRx69e482+cPhC1HrhwOOde7r0nygTX4Dif1srq2vrGZmGruL2zu7dfOjhsaZkryppUCqk6EdFM8JQ1gYNgnUwxkkSCtaPhzdRvPzCluUzvYZSxMCH9lMecEjCSHwBPmMYBkLxbKjt2rVb1LjxsiHfpuRXs2s4M36SMFmh0Sx9BT9I8YSlQQbT2XSeDcEwUcCrYpBjkmmWEDkmf+YamxGwKx7OTJ/jUKD0cS2UqBTxTf06MSaL1KIlMZ0JgoP96U/E/z88h9sIxT7McWErni+JcYJB4+j/uccUoiJEhhCpubsV0QBShYFIqmhCWXl4mrYrtntuVu2q5fr2Io4CO0Qk6Qy66QnV0ixqoiSiS6BE9oxcLrCfr1Xqbt65Yi5kj9AvW+xeiXZF+</latexit>

Input

Output

Noise Injection

Figure S2. The architecture of ResNet blocks in mask-to-image
generator. Object features are aggregated with the generated
masks and transformed as affine parameters in the modulation
parts after normalizations.

Here Pd and Pg are the real and generated distribution.

S2. Discussion
In this section, we discuss several topics on layout-to-

image generation and our method.

Causal relation. LAMA mainly captures the correlation
of objects’ appearance. A more profound objects’ interre-
lation is causal relation [21]. The objects’ causal relation
studies the causality of appearance between objects. In the
layout-to-image scenario, the causal relations are mainly re-
flected by the shape of masks. Take the example of giraffes
and bush in Figure S3. In (a) the bush in the foreground
causes the shape of two giraffes to remove legs, while in
(b) and (c) the giraffe in the foreground causes the back-

Input
layout

Our
generated

image

Real
image

(a) (b) (c)

Figure S3. Example scenes where objects’ visibility is different
when their bounding boxes overlap. Best viewed magnified. See
Section S2 for details.

100 200
epoch

0

20

40

60

80
FID

100 200
epoch

SceneFID

w/ softmax
Ours

Figure S4. Performances of a LAMA variant to infer new masks
directly with a softmax operation as output in Section S2.

ground bush to disappear in the corresponding area. From
the causal perspective, a more robust relation of appearance
may be captured. We will explore this in our future work.

Inferring new masks. Why do we adapt the raw mask
rather than infer a clean mask directly? The reason is the
object mask generator Fom is not aware of overlaps before
object masks are mapped to bounding boxes. Thus, in our
scenario overlaps cannot be avoided until the raw mask is
formed. ConvLSTM [28] modelling relations can be used
to generate masks [12, 20], but the training requires seg-
mentation annotation. Except scaling, an alternative im-
plementation is to translate the raw mask to a new one by
applying softmax to each E·j feature. However, gradients
may vanish in the softmax layer, and there is no shortcut
to bypass gradients to Fom like the current design does,
causing difficulty for convergence. To support our state-

ment, an experiment on the discussed variant is conducted
on COCO [3] with 128 × 128. The difficulty for conver-
gence is not revealed by loss plots, which are dominated by
the discriminator. It is reflected by the performance degrade
(Figure S4), and the result supports our current design.

Similarity to the attention mechanism. LAMA’s com-
putation seems similar to the attention mechanism [32] in
SAGAN [36], but there are two differences. On the one
hand, LAMA matches pixels and objects with a complex-
ity of O(mWH), while SAGAN matches the key and the
query both of pixels with O(W 2H2). On the other hand,
the matching value E has a different meaning. In LAMA,
E determines scaling factors directly through a tanh func-
tion, while in SAGAN it is transformed to weights of atten-
tion with a softmax operation.

0.0 0.2 0.4
0

20

40

60

80
FID

0.0 0.2 0.4

SceneFID

w/o LAMA
Ours

Figure S5. Performances with tainted raw masks in Section S2.

Refining tainted raw masks. To show LAMA is robust to
mask ambiguity, we perform experiments on LAMA with
taint raw masks before adaption, similar to those experi-
ments in Section 3. Specifically, the raw mask M̃ is tainted
as (1 − τ) × M̃ + τ

m × 1(M̃), where τ ∈ [0, 1] and
1(M̃) is the all-one tensor with the same size as M̃ . The
tainted masks are then refined by LAMA and injected into
the image generation pipeline. Empirically, our model is
more robust to mask taint with LAMA than without (Fig-
ure S5). This exemplifies the robustness of LAMA and
LAMA’s ability to alleviate mask unclarity.

Potential scaling rules. Our paper proposes an adaption
approach to aggregate overlapped object masks. A natural
question is whether there is a simple adaption rule, which
may strengthen or shrink masks according to a predefined
object priority. We argue such priority may not be available
in the layout-to-image scenario. For example, Figure S3
depicts images of giraffes and bush, where bounding boxes
of “giraffe” and that of “bush” overlap. In (a) giraffes are
standing behind the bush, and in this case we should have
the mask of “bush” strengthen. However, in (b) and (c) we
have giraffes standing before bush, and the adaption rule

should be reversed. This exemplifies in the real scenario
object relations are too complex to be described by a simple
priority. In the third row of Figure S3 we show LAMA
generates plausible images in this case.

Softmax fusion. Another simple adaption rule is to apply
a pixelwise softmax fusion with a low temperature on the
raw mask. The softmax fusion may strengthen or shrinken
the mask values. However, we hypothesize overlaped ob-
jects with large mask values has similar new values after
softmax fusion, even with a low temperature. Besides, as
raw masks are in (0, 1) with differences not big enough,
masks after softmax are close to 1

m
and not sharper, with

m the number of objects. To verify our hypothesis, we
train a LostGAN-V1 variant [29] with a softmax mask fu-
sion on COCO [3] in the size of 128×128, with a learnable
temperature in (0, 1] from 0.9. The resulting model has an
FID 34.74 and a SceneFID 19.99, while the original Lost-
GANv1 has 29.65 and 20.03. Besides, the resulting model
has a mask entropy 2.01 ± 0.03, higher than the original
0.27± 0.15. The finally learned temperature is 1.0, and the
model does not optimize a lower one. Thus, the softmax
fusion may not help in this scenario.

Disentangling shape and texture. The designed layout-
mask-image pipeline implicitly disentangles object shapes
and texture with the inductive bias in the model. Specifi-
cally, the semantic mask generator provides only the shape
information of objects, as the mask only represents the pix-
elwise visibility strength of objects. On the other hand, the
mask-to-image generator only considers the texture. Al-
though translation models like pix2pixHD [33] or CRN [5]
are able to learn both shapes and texture simultaneously
with convolution operations, their models accept inputs
only in the beginning. In our generator, the generated se-
mantic masks are injected into all hidden normalization lay-
ers, with which the shape information is constantly main-
tained. If the model severely changes the object shapes
with convolution, the following normalization layer will
strengthen the originally generated mask again. Thus, the
mask-to-image generator only provides texture information.
This is how shape and texture are disentangled. Such dis-
entanglement is based on the inductive bias of model archi-
tecture instead of independence priors [11].

In the training, gradients about the appearance of objects
are back-propagated to the mask generator and mask-to-
image generator guided by bounding boxes. Similarly, the
shape and texture information in gradients are disentangled,
and that is why semantic masks can be learned in a weakly-
supervised manner.

Reconfigurability. Reconfigurability means that a model
can preserve most generated objects unchanged given per-

Input layout (a) (b) (c)

Figure S6. Examples of reconfigurability. By adding donuts, existing donuts and the background table remains steady.

turbations of layout and object style [29, 30]. Reconfigura-
bility is intuitive and improves the controllability of gener-
ated images. With reconfigurability, it is possible to manu-
ally adjust the generated result as needed. Without this, the
change of a bounding box like moving or scaling can cause
the change of other objects. Our model is locality-aware as
only adjacent or overlapped objects are correlated, and thus
our model is reconfigurable. We demonstrate examples of
reconfigurability in Figure S6 and S7.

Model complexity. LAMA introcuces extra parameters
of complexity O(dd′ + k′2d′2) and an computation com-
plexity of O(md′WH + k′2d′2WH +mdd′). Parameters
are in ResNet Blocks for local query and transformations
to object query and object key. Here k′ = 3 is the kernel
size of convolutions in ResNet blocks. Recall that m is the
number of objects, d is the size of object features and d′

is the size of object key and query in LAMA. In the imple-
mentation, the LAMA module has about 0.1M parameters.

S3. More Experimental Results
S3.1. Inception Score

We present the evaluation with Inception Score [27] in
Table S1. Inception Score is to estimate the overall visual
quality. The performance of our model is comparable with
other leading methods.

Table S1. Evaluation of Inception Score [27] on COCO-Stuff [3]
and Visual Genome (VG) [16]. A higher value is better. Best
performances are highlighted.

Size Methods Datasets
COCO VG

64×64

Real Images 16.30 ± 0.40 13.90 ± 0.50
Layout2Im [38] 9.10 ± 0.10 8.10 ± 0.10
Layout2Im+OWA [39] 9.70 ± 0.10 8.00 ± 0.20
LostGAN-V1 [29] 9.80 ± 0.20 8.70 ± 0.40
OC-GAN [31] 10.80 ± 0.50 9.30 ± 0.20
Ours 9.77 ± 0.28 8.12 ± 0.08

128×128

Real Images 22.30 ± 0.50 20.50 ± 1.50
LostGAN-V1 [29] 13.80 ± 0.40 11.10 ± 0.60
LostGAN-V2 [30] 14.21 ± 0.40 10.71 ± 0.26
OC-GAN [31] 14.46 ± 0.37 12.30 ± 0.40
Ours 14.46 ± 0.37 10.74 ± 0.09

256×256

Real Images 28.10 ± 1.60 28.60 ± 1.20
LostGAN-V2 [30] 18.01 ± 0.50 14.10 ± 0.38
OC-GAN [31] 17.80 ± 0.20 14.70 ± 0.20
Ours 19.13 ± 0.41 13.52 ± 0.15

S3.2. More Metrics

We conduct extra experiments along metrics introduced
in Casanova et al. [4]. Specifically, we follow the pro-
tocol to use ResNext-101 [35] features and approximate
manifolds on real or generated images with k-nearest-
neighborhood graph, with k = 5. Then we use improved

Input layout (a) (b) (c)

Figure S7. Examples of reconfigurability. By moving and scaling the bench bounding box, the background grassfield, sea and sky remain
steady.

precision and recall [19] 1 and also layout consistency [4]
to estimate generative quality. The improved precision es-
timates whether generated images lie on the real manifold,
while the recall estimates whether real ones lie on the gener-
ated manifold. The consistency measures whether a gener-
ated image shares the same layout with nearby real images.
Higher values are preferred for these three metrics. The re-

1We use the implementation in github.com/youngjung/
improved-precision-and-recall-metric-pytorch

sults on scenes images are shown in Table S2 and on object
crops in Table S3. Best performances are highlighted. Our
method has better performances in most cases.

S3.3. A Variant with ConvLSTM

We further examine a variant of our model by replacing
LAMA with ConvLSTM [28]. Particularly, we give the raw
semantic mask as the initial hidden state. Given the object i,
its object feature is spatially broadcasted to the resized ob-

Table S2. Precision, recall and consistenty on generated scene images (Section S3.2).

Size Methods Precision ↑ Recall ↑ Consistency ↑
COCO VG COCO VG COCO VG

64 × 64 LostGAN-V1 [29] 0.8269 0.7890 0.5172 0.4798 0.2639 0.1052
Ours 0.7904 0.7805 0.5011 0.4782 0.1315 0.1009

128 × 128
LostGAN-V1 [29] 0.7484 0.6531 0.2786 0.2850 0.2104 0.0749
LostGAN-V2 [30] 0.6561 0.7099 0.3810 0.4045 0.0927 0.1492
Ours 0.6703 0.7224 0.3994 0.4529 0.0953 0.0886

256 × 256 LostGAN-V2 [30] 0.7103 0.6774 0.4824 0.4061 0.2254 0.1536
Ours 0.7319 0.6598 0.4204 0.4407 0.1182 0.0777

Table S3. Precision, recall and consistenty on generated object crops (Section S3.2).

Size Methods Precision ↑ Recall ↑ Consistency ↑
COCO VG COCO VG COCO VG

64 × 64 LostGAN-V1 [29] 0.7845 0.8124 0.5306 0.6343 0.3540 0.2835
Ours 0.7218 0.7932 0.3747 0.6597 0.2512 0.2380

128 × 128
LostGAN-V1 [29] 0.7224 0.7564 0.3187 0.4261 0.3104 0.2524
LostGAN-V2 [30] 0.7146 0.7528 0.4178 0.4533 0.3324 0.2507
Ours 0.7158 0.7576 0.4679 0.5377 0.3598 0.3086

256 × 256 LostGAN-V2 [30] 0.6321 0.7019 0.3833 0.3901 0.2895 0.2609
Ours 0.6547 0.7238 0.3652 0.4448 0.3336 0.3169

ject mask, and this spatial object feature is given as the input
of LSTM model. We stack three layers of ConvLSTM, and
take the number of objects as hidden dimension. Finally, the
output of ConvLSTM is treated as the adaption and added
to the raw mask to form the final one. Such residual design
helps to propagate gradient to object mask generator as our
original design does. Following Layout2Im [38], we shuf-
fle the order of objects and form a random input sequence.
The quantitative result is summarized in Table S4, and the
performance decays.

S3.4. Mask Entropy

Mask Entropy evaluates the pixelwise semantic clarity
of a mask, introduced in Section 5.3 in the main paper.
We present the comparison on mask entropies of Lost-
GANs [29, 30] and ours in Table S5. We used official pre-
trained models of LostGANs to generate masks. Specifi-
cally, LostGAN-V2 refines masks based on feature maps in
different scales of the mask-to-image generator. We present
the average value of masks across scales. Results show our
generated mask enjoys lower mask entropy values.

S3.5. Generated Masks Demonstration

We display generated images with their raw and adapted
masks to show the mask adaption capacity of the proposed
LAMA module (Figure S9). The masks are more semanti-
cally clear and clean after adaption with little ambiguity and
sharp boundaries.

0.50

0.52

0.54

0.56

0.58

0.60

Sc
or

e

128×128 | Visual Fidelity 128×128 | Layout Alignment

0 1 2 3 4
Volunteer Idx

0.50

0.52

0.54

0.56

0.58

0.60

Sc
or

e

256×256 | Visual Fidelity

0 1 2 3 4
Volunteer Idx

256×256 | Layout Alignment

Figure S8. Individual preference scores in human evaluation ex-
periments.

S3.6. User Studies

We conduct user studies to evaluate visual fidelity or lay-
out alignment separately. Experiments are performed on
biao.jd.com/wise, an online crowdsourcing platform. Im-
ages are generated by LostGAN-V2 [30] and our model ac-
cording to 3,097 layouts of COCO val2017. Same-layout
images are shuffled and displayed. Four groups of anony-
mous workers rank images in 128 or 256 based on visual fi-

Table S4. Comparison with a variant of our model by replacing LAMA with ConvLSTM [28].
Methods IS ↑ FID ↓ DS ↑ CAS ↑ SceneFID ↓ AP ↑ AP50 ↑ AP75 ↑

Ours 14.46 ± 0.37 23.85 0.46 ± 0.09 34.15 12.35 7.9% 12.0% 8.9%
Ours w/ ConvLSTM [28] 11.10 ± 0.35 37.28 0.55 ± 0.08 31.24 20.78 2.3% 3.6% 2.3%

Table S5. Mask entropies of masks generated by LostGANs [29, 30] and our method.
Size Datasets LostGAN-V1 [29] LostGAN-V2 [30] Ours

64×64 COCO 0.33 ± 0.18 - 0.11 ± 0.07
VG 0.57 ± 0.25 - 0.10 ± 0.09

128×128 COCO 0.27 ± 0.15 0.30 ± 0.16 0.14 ± 0.11
VG 0.51 ± 0.23 0.55 ± 0.19 0.12 ± 0.09

256×256 COCO - 0.29 ± 0.16 0.14 ± 0.10
VG - 0.52 ± 0.19 0.26 ± 0.17

Table S6. Mean preference scores in human evaluation experi-
ments.

Size Visual Fidelity ↑ Layout Alignment ↑

128 × 128 52.58% ± 1.28% 51.50% ± 1.13%

256 × 256 58.58% ± 1.36% 51.94% ± 0.99%

delity or layout alignment separately. Each group has three
males and two females, aged from 20 to 28, with majors
in different disciplines. They are given unlimited time to
make choices. Table S6 summarizes the results, in which
the mean is the average of five scores. Our method has
higher mean scores. In fact, the percentage that each worker
favors ours is over 50% in all cases (Figure S8).

S3.7. Diversity

This part presents more qualitative results to demonstrate
the generative diversity of our proposed model. Given an
input layout, the generated images are determined by the
image style zimg , object variations zi and noise injection in
the generative process. We gradually fix these components
to show the diversity and the visual quality of the model.

Image diversity of different layouts. We demonstrate
the general image diversity of the same layout in Figure S10
(64 × 64), Figure S11 (128 × 128) and Figure S12 (256 ×
256).

Image diversity of different image styles zimg . This
is to show the style diversity of image styles by displaying
images of different zimg (Figure S13). Besides, given the
same layout and zimg , the diversity introduced by zi’s is
shown in Figure S14.

Image diversity of an fixed image style zimg and fixed
zi’s. This is to show the diversity introduced by noise in-
jection given the same zimg and zi’s (Figure S15).

S3.8. Failure Cases

We present some failure cases in Figure S16. Failure in-
cludes mode collapse, artifacts and the failure to generate

complex objects. Especially, our model suffers from fail-
ure in generating “zebra” objects. This may result from the
difficulty to generate high-frequency zebra stripes.

S3.9. Metric Details

We introduce more implementational details about the
adopted metrics in experiments.

Inception Score (IS) [27], Frèchet Inception Distance
(FID) [10] and SceneFID [31]. For each layout, the model
generate five new images. This augmented generated set
of images and the validatation set are used to calculate the
IS and FID value. For SceneFID, objects in images are
cropped and resized to 224× 224, and the FID is computed
with 224× 224 validatation object crops.

Diversity Score (DS). We mainly use LPIPS [37] with a
pre-trained AlexNet [18] to compare two groups of gener-
ated images.

Classification Accuracy Score (CAS) [38]. To com-
pute CAS score, a ResNet-101 [8] is trained on gener-
ated object crops and tested on validation crops. For
each layout in the validation set, five images are gener-
ated and the objects are cropped and resized to 32 × 32.
This forms the training set. The same cropping and re-
sizing process is also applied to the validation images to
form the testing set. The training strategy is designed for
CIFAR10/100 [17] in github.com/hysts/pytorch_
image_classification. Finally, the top-1 testing ac-
curacy is reported as the CAS score.

YOLO scores. We use the official implementation
and pre-trained YOLOv4 [2] model in github.com/
AlexeyAB/darknet. For each layout, only one image is
generated and resized to 512 × 512. The generated images
are measured with AP (average precision), AP50 and AP75

with the COCO API in github.com/cocodataset/
cocoapi.

Input
Layout

Raw
Mask

Adapted
Mask

Generated
Images

Input
Layout

Raw
Mask

Adapted
Mask

Generated
Images

Figure S9. Generated 256 × 256 raw and adapted masks. The raw masks seem blur and ambiguous, while the adapted masks are more
semantically clear.

References
[1] Thomas Bachlechner, Bodhisattwa Prasad Majumder,

Huanru Henry Mao, Garrison Cottrell, and Julian McAuley.

ReZero is all you need: Fast convergence at large depth. In
Uncertainty in Artificial Intelligence (UAI). Proceedings of

Figure S10. Generated 64× 64 images given different layouts.

Machine Learning Research, 2021. 2
[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: optimal speed and accuracy of
object detection. ArXiv, abs/2004.10934, 2020. 8

[3] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. COCO-
Stuff: Thing and stuff classes in context. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2018. 4, 5

[4] Arantxa Casanova, Michal Drozdzal, and Adriana Romero-
Soriano. Generating unseen complex scenes: are we there
yet? ArXiv, abs/2012.04027, 2020. 5, 6

[5] Qifeng Chen and Vladlen Koltun. Photographic image syn-
thesis with cascaded refinement networks. IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 1520–
1529, 2017. 4

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in Neural Information Processing Systems (NeurIPS), pages
2672–2680. Curran Associates, Inc., 2014. 2

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In IEEE International Conference on
Computer Vision (ICCV), pages 2961–2969, 2017. 2

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 1, 2, 8

[9] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Identity
mappings in deep residual networks. In European Confer-
ence on Computer Vision (ECCV), pages 630–646. Springer,
2016. 1

[10] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Advances in Neural Information Processing Systems
(NeurIPS), pages 6626–6637. Curran Associates, Inc., 2017.
8

[11] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. β-VAE: Learning basic visual concepts
with a constrained variational framework. In International
Conference on Learning Representations (ICLR), 2017. 4

[12] Seunghoon Hong, Dingdong Yang, Jongwook Choi, and H.
Lee. Inferring semantic layout for hierarchical text-to-image
synthesis. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7986–7994, 2018. 3

[13] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International Conference on Machine Learn-
ing (ICML), pages 448–456. PMLR, 2015. 1

[14] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4401–4410, 2019. 2

[15] Mahyar Khayatkhoei and Ahmed Elgammal. Spatial fre-
quency bias in convolutional generative adversarial net-
works. ArXiv, abs/2010.01473, 2020. 16

[16] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual Genome:
Connecting language and vision using crowdsourced dense
image annotations. International Journal of Computer Vi-
sion (IJCV), 123(1):32–73, 2017. 5

Figure S11. Generated 128× 128 images given different layouts.

[17] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learn-
ing multiple layers of features from tiny images. Techni-
cal report, Department of Computer Science, University of
Toronto, 2009. 8

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems (NeurIPS), page 1097–1105. Curran Associates Inc.,
2012. 8

[19] T. Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehti-
nen, and Timo Aila. Improved precision and recall metric
for assessing generative models. In Advances in Neural In-
formation Processing Systems (NeurIPS), 2019. 6

[20] Wenbo Li, Pengchuan Zhang, Lei Zhang, Qiuyuan Huang,
Xiaodong He, Siwei Lyu, and Jianfeng Gao. Object-
driven text-to-image synthesis via adversarial training. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12166–12174, 2019. 3

[21] David Lopez-Paz, Robert Nishihara, Soumith Chintala, B.
Schölkopf, and Le on Bottou. Discovering causal signals in
images. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 58–66, 2017. 3

[22] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In International Conference on Learning
Representations (ICLR), 2018. 2

[23] Takeru Miyato and Masanori Koyama. cGANs with projec-
tion discriminator. In International Conference on Learning
Representations (ICLR), 2018. 2

[24] Hyeonseob Nam and Hyo-Eun Kim. Batch-instance normal-
ization for adaptively style-invariant neural networks. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
pages 2558–2567. Curran Associates Inc., 2018. 2

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
Torch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 8024–8035. Curran Associates, Inc.,
2019. 1, 2

[26] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred A. Hamprecht, Yoshua Bengio, and

Figure S12. Generated 256× 256 images given different layouts.

Aaron Courville. On the spectral bias of neural networks.
In International Conference on Machine Learning (ICML),
pages 448–456. PMLR, 2019. 16

[27] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training GANs. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 2234–2242. Curran Asso-
ciates, Inc., 2016. 5, 8

[28] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung,
Wai-kin Wong, and Wang-chun WOO. Convolutional LSTM
network: A machine learning approach for precipitation
nowcasting. In Advances in Neural Information Process-

ing Systems (NeurIPS), volume 28, pages 1–9. Curran As-
sociates, Inc., 2015. 3, 6, 8

[29] Wei Sun and Tianfu Wu. Image synthesis from reconfig-
urable layout and style. In IEEE International Conference
on Computer Vision (ICCV), pages 10531–10540, 2019. 1,
2, 4, 5, 7, 8

[30] Wei Sun and Tianfu Wu. Learning layout and style re-
configurable GANs for controllable image synthesis. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2021. 2, 5, 7, 8

[31] Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R. De-
von Hjelm, and Shikhar Sharma. Object-centric image gen-

(b)(a)
Figure S13. Generated 256× 256 images given two different zimg ’s in (a) and (b).

eration from layouts. In International Conference on Learn-
ing Representations (ICLR), 2021. 5, 8

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems (NeurIPS), page
6000–6010. Curran Associates Inc., 2017. 4

[33] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018. 4

[34] Yuxin Wu and Kaiming He. Group normalization. Inter-
national Journal of Computer Vision (IJCV), 128:742–755,
2019. 1

[35] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5987–5995, 2017. 5

[36] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks.
In International Conference on Machine Learning (ICML),
pages 7354–7363. PMLR, 2019. 4

[37] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

�D� �E� (c) �G� �H� (f)
Figure S14. Generated 256×256 images of multiple zimg ’s. Each column has the same zimg , and these are to show the diversity introduced
by object variation zi’s.

man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
586–595, 2018. 8

[38] Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image
generation from layout. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8584–8593,
2019. 5, 7, 8

[39] Bo Zhao, Weidong Yin, Lili Meng, and Leonid Sigal. Lay-
out2image: Image generation from layout. International
Journal of Computer Vision (IJCV), pages 1–18, 2020. 5

[40] Xiaoyun Zhou, Jiacheng Sun, Nanyang Ye, X. Lan, Q. Luo,
Bolin Lai, Pedro M. Esperança, G. Yang, and Zhenguo Li.
Batch group normalization. ArXiv, abs/2012.02782, 2020. 2

Figure S15. Generated 256× 256 images given the same zimg and zi’s. Each column of images share the same zimg and zi’s. These are to
show fine-grained stochastic variation introduced by noise injection in the generator.

(a1) (a2) (b1) (b2) (c1) (c2)
Figure S16. Generated 256 × 256 failure cases. The typical failure cases of the proposed model include mode collapse (a), artifacts (b)
and the inability to learn complex objects (c). (a) The model ignores the stochastic variation in the model and generates nearly the same
images. (b) In the blank area not covered by bounding boxes, the model generates artifacts. (c) The model fails to generate zebras, which
has a complex texture. Such texture is high-frequency signals, which the model may fail to fit and simply ignore [15, 26].

