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Overview

In this supplementary material, we provide additional
contents that are not included in the main paper due to the
space limit:

• Details of the encoder of our network (see Section 1).

• Additional information of datasets and evaluation cri-
teria (see Section 2).

• Additional comparisons with state-of-the-art methods
(see Section 3).

• Details of a baseline method using the equi-angular
discretization on the sphere (see Section 4).

• Additional tests of loss function (see Section 5).

1. Encoder of Our Network

As introduced in Section 3.2 of the main paper, we fol-
low DCGAN [7] to design the encoder of our network. As
shown in Fig. 1, we present the details. Our encoder works
on the image domain. The height and width of an input
image are 480 and 640 pixels, respectively. We first use a
series of convolutions to extract features. The stride of con-
volution is 2, and the size of convolution kernel is 5 × 5.
Each convolution is followed by bias adding, batch normal-
ization, and leaky ReLU function. Then we reshape the
feature map from 15 × 20 to 1 × 300 pixels. After that,
we multiply this map by a 300 × 320 matrix, obtaining a
1 × 320 code. Note that the entries of this matrix are net-
work parameters to optimize. Finally, we reshape the code
from 1 × 320 to 20 × 42 pixels, and treat the result as the
input spherical map of our decoder.

*Haoang Li and Kai Chen contributed equally to this work.
†Kyungdon Joo and Yun-Hui Liu are corresponding authors.
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Figure 1. Our encoder works on the image domain. “S” and “C”
denote the image size and the number of channels, respectively.
We conduct matrix multiplication on each channel independently.

(a) (b) (c)
Figure 2. Representative images that satisfy (a) Manhattan world,
(b) Atlanta world and (c) MMF, respectively.

Table 1. Structure models used to express the scenes of datasets.

Manhattan World [1] Atlanta World [8] MMF [10]

YUD+ [2]
√ √ √

VSD [5] -
√

-

NYU-VP [9]
√ √ √

SU3 [13]
√

-
√

2. Dataset and Evaluation Criteria

Datasets. As shown in Fig. 2, three well-known struc-
ture models (i.e., Manhattan world [1], Atlanta world [8],
and mixture of Manhattan frames (MMF) [10]) hold for
various man-made environments. Table 1 summaries the
models used to express the scenes of SU3 [13], YUD+ [2],
VSD [5], and NYU-VP [9] datasets.

Precision, Recall, and F1-score. As shown in Fig. 3(a),
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Figure 3. (a) Illustration of true positive, false positive, and false
negative to compute the precision and recall of image line cluster-
ing. (b) Illustration of consistency error.

we follow [5, 6] to define the true positive, false positive,
and false negative of image line clustering. We compute the
precision, recall, and F1-score by

precision =
N(true positive)

N(true positive) +N(false positive)
;

recall =
N(true positive)

N(true positive) +N(false negative)
;

F1-score = 2 · precision · recall
precision + recall

,

(1)

where N(·) denotes the cardinality.
Consistency Error. As shown in Fig. 3(b), an estimated

vanishing point and the midpoint of an image line l associ-
ated with this vanishing point define a virtual line v. Con-
sistency error represents the distance from an endpoint of
the line l to the virtual line v. Given a set of image lines,
we follow [11, 12] compute the root mean square of consis-
tency errors.

3. Comparisons with State-of-the-art Methods
As shown in Fig. 4, we present additional comparisons

with state-of-the-art methods. Overall, these results are sim-
ilar to the results reported in Fig. 7 and Table 1 of the main
paper. Specifically, the generality of TR-L-3 is low since
this method assumes Manhattan world. TR-L-auto leads
to low efficiency due to high-dimensional search space and
highly non-linear cost function. Moreover, it cannot han-
dle sloping DDs, which results in unsatisfactory generality.
DL-nL-3 provides low generality due to the assumption of
three DDs. Moreover, it is efficient but inaccurate due to its
coarse-to-fine sampling strategy on the sphere. The accu-
racy of DL-L-auto is unsatisfactory since the sampled im-
age lines may be affected by noise. In contrast, our DL-nL-
auto simultaneously achieves high generality, satisfactory

Table 2. Comparison between various combinations of MSE, AS,
and L0 losses on all the datasets. We report the mean.

Coefficients
Cons. Error F1-score

Fitting Regularization

λMSE = 1

λAS = 0.25, λ1 = 0.05 2.298 pix. 87.01%

λAS = 0.25, λ1 = 0.15 2.243 pix. 87.23%

λAS = 0.75, λ1 = 0.05 2.125 pix. 87.36%

λAS = 0.75, λ1 = 0.15 2.084 pix. 87.94%

λMSE = 2

λAS = 0.25, λ1 = 0.05 1.793 pix. 89.58%

λAS = 0.25, λ1 = 0.15 1.752 pix. 89.67%

λAS = 0.75, λ1 = 0.05 1.683 pix. 90.31%

λAS = 0.75, λ1 = 0.15 1.697 pix. 90.18%

λMSE = 3

λAS = 0.25, λ1 = 0.05 1.916 pix. 88.54%

λAS = 0.25, λ1 = 0.15 1.895 pix. 88.79%

λAS = 0.75, λ1 = 0.05 1.796 pix. 89.33%

λAS = 0.75, λ1 = 0.15 1.801 pix. 89.15%

λMSE = 2, λAS = 0.5, λ1 = 0.1 (Our) 1.644 pix. 90.75%

accuracy, and high efficiency. Therefore, it is more practi-
cal than the other methods.

4. Baseline Using Equi-angular Discretization
As introduced in Section 6.2 of the main paper, we de-

sign a baseline method using the equi-angular discretization
on the sphere. As shown in Figs. 5(a) and 5(b), the input of
baseline is the same as the input of our network. For the
output spherical map based on equi-angular discretization
of baseline, we set its resolution as 104 × 208 = 21, 632
pixels1. This resolution is similar to the resolution of icosa-
hedral spherical representation, i.e., 20× 45 = 20, 480 pix-
els, which contributes to a fair comparison. The reason why
the second dimension (i.e., 208) is two times the first di-
mension (i.e., 104) is that the range [−π, π] of longitude is
two times the range [−π

2 ,
π
2 ] of latitude. In the following,

we present details.
As shown in Fig. 5(a), except for the image sizes in the

last two layers, the encoder of baseline is the same as the
encoder of our network. Recall that the encoder of our net-
work outputs a code whose length is 20×42 = 320. In con-
trast, the encoder of baseline outputs a code whose length
is 13 × 26 = 338. These lengths are of the same magni-
tude, which contributes to a fair comparison (similar to the
aforementioned resolution of the spherical map).

As shown in Fig. 5(b), overall, the decoder of base-
line is similar to the decoder of our network. We summa-
rize only three differences as follows. First, image sizes
in corresponding layers are slightly different. For exam-
ple, 26 × 52 = 1352 pixels of baseline correspond to
20× 43 = 1280 pixels of our network. Second, the decoder

1The resolution 100 × 200 = 20, 000 pixels mentioned in the main
paper refers to the rough magnitude but not exact value.



Extracted Lines Ground Truth TR-L-3 [6] TR-L-auto [5] DL-nL-3 [13] DL-L-auto [3] DL-nL-auto (our)

102 Lines 4 VPs 77.11%, 0.749 pix. 79.29%, 0.695 pix. 68.39%, 1.117 pix. 96.97%, 0.891 pix. 98.51%, 0.864 pix.
(Outdoor) (1 Sloping VP) 0.265 s 4.204 s 0.362 s 0.415 s 0.277 s

82 Lines 5 VPs 74.02%, 1.106 pix. 99.37%, 0.782 pix. 84.89%, 1.332 pix. 89.66%, 1.355 pix. 96.10%, 0.852 pix.
(Outdoor) (4 Horizontal VPs) 0.218 s 3.163 s 0.364 s 0.378 s 0.284 s

49 Lines 4 VPs 93.48%, 0.779 pix. 93.48%, 0.499 pix. 93.48%, 1.203 pix. 98.97%, 0.951 pix. 98.97%, 0.909 pix.
(Indoor) (1 Sloping VP) 0.109 s 2.178 s 0.348 s 0.361 s 0.280 s

84 Lines 4 VPs 90.91%, 0.966 pix. 97.56%, 0.865 pix. 80.85%, 2.179 pix. 96.30%, 1.238 pix. 97.56%, 1.202 pix.
(Indoor) (3 Horizontal VPs) 0.239 s 2.906 s 0.353 s 0.438 s 0.262 s

G: ↓, A: ↑, E: ↑ G: −, A: ↑, E: ↓ G: ↓, A: −, E: − G: −, A: −, E: − G: ↑, A: −, E: ↑
Figure 4. Additional generality (“G”), accuracy (“A”) and efficiency (“E”) comparisons on four representative images. “↑”, “−” and “↓”
represent high, middle and low, respectively. We use image lines to compute F1-score and consistency error, regardless of whether a
method requires image lines for vanishing point (VP) estimation. In the 3-rd to 7-th columns, a dotted line in the image represents the
connection between the midpoint of a clustered image line and an estimated VP. A triplet of numbers below an image represents F1-score,
consistency error, and run time.

of baseline follows [4] to use traditional 2D image convolu-
tion for the equi-angular discretization on the sphere. The
stride of convolution is 1, and the size of convolution ker-
nel is 5 × 5. In contrast, the decoder of our network uses
the spherical convolution (see Fig. 3(b) of the main paper).
Third, as shown in Fig. 5(c), the up-sampling used by base-
line is different from the spherical up-sampling used by our
network (see Fig. 3(c) of the main paper). Despite differ-
ences, both strategies pad three neighbors of a pixel with
zero for a fair comparison.

5. Tests of Loss Function

As introduced in Section 3.3 of the main paper, we em-
pirically set the coefficients of MSE, AS, and L0 sub-losses
as 2, 0.5, and 0.1, respectively. In the following, we conduct
tests by varying these coefficients. As shown in Table 2, we
vary the coefficient λMSE of MSE loss from 1 to 3. We vary
the coefficient λAS of AS loss from 0.25 to 0.75. We vary
the coefficient λ1 of L0 loss from 0.05 to 0.15. Since the
coefficient combination {λMSE = 2, λAS = 0.5, λ1 = 0.1}

leads to the highest accuracy, we treat it as our fine-tuned
combination.
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(a) Encoder on Image Domain
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Figure 5. Baseline method using the equi-angular discretization
on the sphere. (a) The encoder of baseline is analogous to the
encoder of our network in Fig. 1. Their differences in image sizes
are highlighted in yellow. (b) The decoder of baseline is analogous
to the decoder of our network in Fig. 3(a) of the main paper. (c)
The up-sampling of baseline is analogous to the up-sampling of
our network in Fig.3(c) of the main paper. We transfer a pixel p
in the lower-resolution map to a pixel p′ in the higher-resolution
map, and then pad three gray neighbors of p′ with 0.

[6] Haoang Li, Ji Zhao, Jean-Charles Bazin, and Yun-Hui Liu.
Quasi-globally optimal and near/true real-time vanishing
point estimation in Manhattan world. TPAMI, 2020. 2, 3

[7] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gener-
ative adversarial networks. In ICLR, 2016. 1

[8] G. Schindler and F. Dellaert. Atlanta world: An expec-
tation maximization framework for simultaneous low-level
edge grouping and camera calibration in complex man-made
environments. In CVPR, 2004. 1

[9] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
RGBD images. In ECCV, 2012. 1

[10] Julian Straub, Oren Freifeld, Guy Rosman, John Leonard,
and John Fisher. The Manhattan frame model—Manhattan
world inference in the space of surface normals. TPAMI,
2018. 1

[11] Jean-Philippe Tardif. Non-iterative approach for fast and ac-
curate vanishing point detection. In ICCV, 2009. 2

[12] Lilian Zhang, Huimin Lu, Xiaoping Hu, and Reinhard Koch.
Vanishing point estimation and line classification in a Man-

hattan world with a unifying camera model. IJCV, 2016. 2
[13] Yichao Zhou, Haozhi Qi, Jingwei Huang, and Yi Ma.

NeurVPS: Neural vanishing point scanning via conic con-
volution. In NeurIPS, 2019. 1, 3


