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A. MINE vs. pixelNeRF and GRF
There are two recent works: pixelNeRF [10] and

GRF [8] that condition NeRF [6] on input image(s). pix-
elNeRF [10] first extracts a feature map from a given input
image. A feature vector at each query position x and view-
ing direction d is subsequently sampled from the feature
map via projection and bilinear interpolation. The sampled
feature vector then serves as an additional input to the MLP
along with x and d to predict the RGB-σ values. The ren-
dering process is the same as NeRF. GRF [8] follows the
same principles, but it assumes multiple views of a scene
are available at test time.

Our MINE is different from pixelNeRF and GRF in two
aspects:

• MINE directly models the frustum of the source cam-
era, while both pixelNeRF and GRF model the entire
3D space.

• MINE reconstructs the frustum of the source camera
per plane, while pixelNeRF and GRF reconstruct the
entire 3D space per ray.

A direct consequent of these differences is that our MINE is
significantly more efficient. Both pixelNeRF and GRF ren-
der the output image pixel by pixel, and therefore the num-
ber of forward passes required is proportional to the spatial
resolution of the output, the number of points along each
ray, and the number of target views to render. On the con-
trary, since our MINE reconstructs the entire frustum of the
source camera per plane, we only require Nplanes forward
passes of the fully-convolutional decoder to obtain the rep-
resentation. Furthermore, the rendering for each novel view
only requires an additional homography warping step.

More concretely, let us denote the output resolution as
H×W . We further denote the number of points along each
ray from pixelNeRF and GRF as Npoints, and the number of
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planes from our MINE as Nplanes. The number of network
forward passes P required for these methods are:

PpixelNeRF = 1 +Ntargets ×Npoints ×H ×W,

PGRF = Nviews +Ntargets ×Npoints ×H ×W,

PMINE = 1 +Nplanes,

(1)

where Ntargets denotes the number of novel views.
All three methods listed above utilize the encoder-

decoder structure to condition on the input image(s). pixel-
NeRF and our MINE takes single image as input, and then
the encoder is forwarded only 1 time. In contrast, GRF takes
multiple images as input, and thus requires Nviews encoder
inferences.

Note that for pixelNeRF and GRF, Npoints×H×W times
of decoder (MLP) inferences are required for each target
view. On the other hand, our MINE reconstructs the frustum
using Nplanes decoder (Fully Convolutional Network) infer-
ences. After the reconstruction, only homography warping
is required to render into any target view. Consequently, the
complexity of our MINE is independent of Ntargets, while
the complexity of pixelNeRF and GRF is proportional to
Ntargets.

Also note that our method does not take viewing di-
rection as inputs, but we argue that the viewing directions
can be easily integrated into our framework by concatenat-
ing the per-ray viewing directions with the output feature
maps at the target view (after warping), and then using a
lightweight fully convolutional network to predict the view-
dependent radiance. This only adds Nviews network infer-
ences in total, which is still significantly faster than pixel-
NeRF and GRF.

The efficiency of our MINE also allows for more flex-
ible training strategies. Since our MINE renders the full
target image and disparity map in training time, it is pos-
sible to impose dense supervision signals, e.g. SSIM [12]
and edge-aware smoothness loss [3, 2, 9]. We argue that
these dense supervision signals are helpful for generalizing



to real-world large-scale datasets, as verified empirically by
our extensive experiments. Due to their inefficiency, it is
infeasible for NeRF-like methods to render the full image
at training time.

Lastly, neither pixelNeRF nor GRF presents experiments
with large scale real-worlds data. Our MINE is verified with
well-known datasets like KITTI, NYU-V2, RealEstate10k,
etc.

B. Additional Implementation Details
Network architecture. Our encoder is a standard
ResNet50 [4], we take the outputs of [conv1, layer1, layer2,
layer3, layer4] as the final output of the encoder. We give
a complete description of our decoder architecture in Table
1. The decoder is the same as the depth decoder in [3], ex-
cept that we add two additional downsampling blocks and
two upsampling blocks to increase the receptive fields of
the network, and the output of the network is a 4-channel
RGB-σ image. The RGB output is produced by a Sigmoid
layer, and σ is produced by taking the absolute value of the
last channel of the output. We adopt the multi-scale train-
ing strategy in [3] with the exception that LL1 and LSSIM

are only applied on output1 and Lsmooth is applied on all
[output1, output2, output3, output4]. Note that our method
is not restricted to specific network architecture.

Pre-processing for Flowers Light Fields. For the Flower
Light Fields dataset [7], we set the disparity range to be
[3.0, 0.03]. Since this dataset was taken with the Lytro Il-
lum camera, there is a shift in the principle point between
different views. In this dataset, all light fields are taken with
the same camera, but the shifts in the principle points could
vary across different scenes. Since there is no metadata to
indicate the amount of the shifts, we follow [9] and make
it constant. Specifically, we set the camera intrinsics as fol-
lows:

fx = 0.868056, fy = 1.250000,

cxij
= 0.5 + 0.002667 ∗ i,

cyij
= 0.5 + 0.002667 ∗ j,

(2)

where [i, j] is the index in the extracted 8× 8 grid and [0, 0]
denotes the top left view. Since this dataset was captured
with a light field camera, in addition to the principle point
shift, there is a translation between different views and there
is no rotation. In training and testing, same as [9], we set
the distance between adjacent grids to be 0.00128.

C. Additional Qualitative Results
Supplementary image results. We include additional
qualitative results for KITTI (Figure 1), RealEstate10K [11]
(Figure 2) and Flowers Light Fields (Figure 3). Our method

generalizes well to a wide range of real-world scenes, in-
cluding outdoor and indoor scenes, and flowers with com-
plex geometry. All scenes are unseen in training.

Supplementary video results. We also include sup-
plementary videos results (uploaded separately) for the
RealEstate10K, KITTI and iBims-1 [5] datasets, covering
both outdoor scenes and indoor scenes with complex ge-
ometries and textures. For each scene, we include both the
RGB videos and the videos of disparity maps. Given a sin-
gle image as input, we generate the video by rendering into
multiple novel views. All scenes are unseen during training.
We demonstrate that even under large camera motion, our
MINE is still able to generate temporally consistent realistic
images, and smooth and accurate disparity maps.



layer k in-channels out-channels input activation
downconv1 1 2048 512 encoder layer4 ELU [1]
downconv2 3 512 256 downconv1 ELU

upconv1 extra 3 256 256 downconv2 ELU
upconv2 extra 1 256 2048 upconv1 extra ELU

upconv5 3 2048 + 21 256 cat(upconv2 extra, disparity encoding) ELU
iconv5 3 256 + 1024 + 21 256 cat(upconv5, encoder layer3, disparity encoding) ELU

upconv4 3 256 128 iconv5 ELU
iconv4 3 128 + 512 + 21 128 cat(upconv4, encoder layer2, disparity encoding) ELU
output4 3 128 4 iconv4 Sigmoid (for RGB) and abs (for σ)
upconv3 3 128 64 iconv4 ELU
iconv3 3 64 + 256 + 21 64 cat(upconv3, encoder layer1, disparity encoding) ELU
output3 3 64 4 iconv3 Sigmoid (for RGB) and abs (for σ)
upconv2 3 64 32 iconv3 ELU
iconv2 3 32 + 64 + 21 32 cat(upconv2, encoder conv1, disparity encoding) ELU
output2 3 32 4 iconv2 Sigmoid (for RGB) and abs (for σ)
upconv1 3 32 16 iconv2 ELU
iconv1 3 16 16 upconv1 ELU
output1 3 16 4 iconv1 Sigmoid (for RGB) and abs (for σ)

Table 1. Network architecture for our depth decoder. All upconv blocks consist of a convolution layer, a batch normalization layer and an
activation layer as specified in the table, followed by a 2× nearest neighbour upsampling. The downconv blocks consist of a max pooling
layer of stride 2, a convolution layer followed by an activation layer.
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Figure 1. Qualitative results for KITTI.
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Figure 2. Qualitative results for RealEstate10K.
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Figure 3. Qualitative results for Flowers Light Fields.
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