Append for MixMix

A. Additional Derivation and Main Proofs

In this section, we first recap the results from Gretton et
al. [2], then we prove Theorem 4.2. From [2, Theorem 5],
as known that when the RKHS is universal, we have p = ¢
if and only if ||, — 14]|3, = 0. The proof is illustrated as
follows. First, p = q implies MMD?[H, X, Z] = 0. Then,
we only have to prove the converse. When H is universal,
for any given ¢ > O and f € C(X), there existsa g € H
such that || f — g||cc < €. Now, we simplify the notion of
expectation Fyp,, E,~q to E;, E, and make an expansion
that

|Exf(x) — E.f(2)| < |Eaf(z) — Exg(z)|+
|Emg(x) - Ezg(z)‘ + |Ezg(z) - Ezf(z)‘ (1)

By the universality of the RHKS, there exist a g € H so that
the first and the third term satisfy

|Exf(2) = Exg(2)] < Ex|f(z) —g(z)| < (2)

For the second term, since g € H, |Eyg(z) — E.g(2)]
should be no grater than sup(MMD[H, X, Z]). Since the
squared MMD can be represented by ||p1, — p4||3, and is 0,
we can find the second term is O for sure. Therefore, for any
€ > 0, we have

|Ef(x) — E.f(2)] < 2eforany f € C(X). (3)
Thus p = g by Lemma 4.2.
A.1. Proof of Theorem 4.2

The proof of this theorem relies on the recent advance
in ReLU networks universality. Without loss of generaliz-
ability, we will assume all the m networks has same max-
imum width w. Given an input domain X C R? and an
output codomain Y C R, we define LP(X,)) as the class
of LP functions from X to), endowed with the LP- norm:
fllp = ([y [|f(2)|[Bdx)/P. Park et al. [10] show that, for
any p € [1, 00|, ReLU networks of width w are universal in
LP(R?,R) if and only if w > d + 1.

We will show that the number of neural network assem-
bled together (i.e., m) can be translated into the width of
a single neural networks. Thus, we only have to ensure
m > ceil(“t). We assume the inputs as well as outputs

are normalized to [0, 1]¢, which can be easily generalized
to other cases. Following [10], we will construct each neu-
ral network into an encoder-memorizer-decoder structure.
In the encoder structure, we empoly a quantization function
that can quantize a scalar into binary representation. Denote
B, ={0,27",2x27" ..., 1—27"} as the fixed-point set
for bit-width n, the quantization function is given by:

gn(z) = Binary(max{b € B, : b < z}), 4

where the Binary function means converting the decimal
representations into binary representations. For example,
scalar 0.5 will be quantized to 100 using g3 and 1000 using
q4. The quantization function will produce error that is al-
ways less than or equal to 27", Thus, the error can be made
arbitrarily small by choosing a large n.

For quantization of the input vector X € [0, 1]¢, we will
simply concatenate each quantized element in the vector,
given by:

d
encode,(X) = an(Xi) w 9—(@E—1)n (5)
i=1

Note that multiplying 2~(¢~1" for binary representations
is equivalent to perform right shift (¢ — 1)n bits. In other
words, the inputs vector are encoded into a dn-bit binary
representation. For the output scalar y, we can also encode
it into a k-bit binary fixed-point number. Now we will con-
struct the memorizer. The memorizer can map each quan-
tized input to each quantized output, given by:

memorize, ;(encode,(X)) = encodei(y) (6)

This memorizer function can map one scalar to another
scalar. And again, the information loss can be made arbi-
trarily small by choosing some n and k. Finally, we use
a decoder in network to map the binary representation into
decimal representation. The decoder can be viewed as the
inverse encoder, though we cannot completely restore the
original value. Han et al. [3] prove that any continuous
function with d-dimensional input to n-dimensional out-
puts can be approximated using ReLU networks of width
d + n. Therefore, the encoder-memorizer-decoder structure
only requires d+1, 2, 2 width for each sub-module. Assume
a target function f, the network function can be constructed

as g ©gogqn, where g is the memorizer. Thus, for any € > 0,
we have

sup |[f(z) —qr 0 g o qn(®)||ls <, (7)
z€[0,1]4

by choose large enough n, k so that w;(27") + 27 < ¢
where wy is the modulus of continuity of f : ||f(x) —
1@lloe < wyplle - 'l|) Va,a' € [0,1]°.

In fact, the quantization representation, as well as the
concatenation of the quantized input, can be assembled
from different networks. For example, we can use km-bit
to encode the output scalar. This implementation gives us
flexibility to split the encoded output into m different k-bit
quantized output scalar. And by simple linear transforma-
tion can we merge m outputs into a scalar. The same split-
then-merge operation can be applied into the encoder of the
input vectors. Each network can concatenate % elements in
the input vector.

As a consequence, each network’s memorize will map
the split input to the split output. Again, the informa-
tion loss for each network can be made arbitrarily small by
choosing sufficiently large encoding bitwidth.

B. Implementation Details
B.1. Pre-trained Model Zoo Composition

We summarize the information in Table 1.

B.2. Learning the Loss Weight

We find the BN statistic loss will vary along with models.
This is because the depth and width in each model are not
identical. Therefore, it is not practical to manually set the
loss weight (A in Eq. ??) for different models. To address
this problem, we adopt a similar strategy in [6] to learn the
loss weight by backpropagation. In particular, we first nor-
malized each loss term to 1 after the first calculation of the
loss function. Denote the normalized loss term as L, the
adaptive loss weight is formulated by

_ L
min =~ <(12Li(X) + a?) : ®)

?

where L;(X) is the normalized loss term, e.g. BN statis-
tic loss and cross-entropy loss, and «; is the learnable loss
weight to balance the loss function. Eq. (8) can tune the
loss weight based on the magnitude of each normalized loss
term and prevent gradient domination. For example, if L;
becomes two low, a; will decrease so that the gradient of
%Li will increase accordingly, thus preventing the gradient
domination. It is worthwhile to note that we do not spend
much time in finding the best hyper-parameters and learn-
ing rule for a, yet the performance of MixMix still outstrips
existing methods.

B.3. Implementation Details

This section describes the hyper-parameters for image
synthesis and data-free compression in detail.

For image synthesis, we use the multi-resolution training
pipelines, that is to say, we first downsample the images to
112 x 112 and then use full resolution training to speed-up
the training. We use 2.5k iterations for low-resolution op-
timization and 2.5k iterations for high-resolution optimiza-
tion. The batch size for each GPU is set to 8. Before for-
ward process of the images, we randomly apply flip and
color jitter to the images to simulate the data augmentation.
Then we apply Data Mixing ensure exact inversion. The
bounding box edge ratio of the data mixing is sampled from
U(0.1,0.4). We use Adam optimization with betas to (0.5,
0.5) and do not apply any L2 regularization. For optimiza-
tion of loss weight, we set a constant learning rate le-3. The
learning rate of images is set to 0.25 followed by a cosine
decay schedule. After each update of the images, we clip
the images to prevent the value from increasing too high.

For post-training quantization experiments, we adopt ex-
actly the same hyper-parameters in its original paper [7].
BRECQ optimizes the rounding mechanism of weight quan-
tization. It adopts the block-by-block feature reconstruction
to optimize the weights, formalized by

argmin E[Wx — Wx] + A (1 — [20(vi) — 1/7),

subject to W = s x clip (LWJ + J(v),n,p> .9
s

The variable v can determine rounding up or rounding
down by using a sigmoid function o(+). The regularization
term in Eq. (9) ensures o(v) can converge to O or 1. n and
p are the limit integer restricted by bit-width and A, 8 are
the hyper-parameters. A is set to 0.1 and S will decrease in
training process to enhance the regularization.

For quantization-aware training, we use the intermedi-
ate feature quantization loss proposed in [4] and the loss
weight is set to 300. To prevent overfitting of the model,
we use random color jitter (0.2, 0.2, 0.2, 0.1), random grad
scale (probability=0.2), random Gaussian blur (1, 2, proba-
bility=0.5) and random horizontal flip. We freeze the update
of BN statistics when the training iteration reaches 10000
since we find updating BN statistics will alter the real ac-
tivation distribution. The learning rate is set to 0.04 and
will be multiplied by 0.1 at iteration 4000, 10000, 20000.
Weight decay is set to the same as the full precision model.
A recent benchmark paper [8] gives a comprehensive study
of QAT, we do not use such settings since generating 1.2M
synthesized images taks too much time. We also avoid
studing mixed precision quantization [1, 9] due to the var-
ious search space in existing work. We find image quality
does not necessarily corresponds to the precision search re-
sults. The quality of images should be verified via training.

Table 1. Pre-trained model zoo for generating MixMix dataset. AD means average down and deep stem layers as proposed in [5].

Model Acc. Model Acc. Model Acc.
ResNet-34 74.03 MobileNetV2_1.0 73.15 DenseNet-201 77.59
ResNet-50AD 79.03 MobileNetV2.2.0 77.81 ShuffleNetV2_1.5 72.82
ResNet-101AD 80.23 MNasNet_1.0 74.02 ShuffleNetV2_2.0 74.47
ResNet-152AD 80.87 MNasNet_2.0 76.68 MobileNetV3_Large_ 1.0 75.29
RegNetX-600MF 7423 VGGI16_BN 73.68 MobileNetV3_Large_1.4 77.15
RegNetX-1600MF 77.29 SE-Net-50 79.00 NASNet-7ms 75.77
RegNetX-3200MF 78.72 DenseNet-121 75.77 NASNet-10ms 77.71

For data-free pruning experiments, we use a two-stage
algorithm to prune the network. In stagel, we directly find
the weights that has lowest L1 norm, and then add a 0-1
mask to the weights. Then, we jointly train the mask and
the weights, given by:

argmin E[Wx — (M © W)x] (10)
MW

After reconstruction, we will absorb the mask and the
weights and then find the weights with the lowest L1 norm
again. In Stage2, we will only optimize the weights and
freeze mask, so that the sparsity will hold after the recon-
struction. In each stage we optimize weights or mask for
Sk iterations with learning rate 4e-5 followed by a cosine
annealing schedule.

C. The Choice of Model Zoo

Sometimes it is not possible to find 20 pretrained models
on some dataset. Therefore we evaluate a tiny version of
MixMix. Here we build two tiny zoo: the first one contains
MBV2, MBV3 and MNasNet; the second one contains Res-
18, -34, -50. We call them MixMix-mobile and MixMix-
residual, respectively.

Generally, we find add more models can improve the
performance compared with single model method. How-
ever, we still observed a decrease in generalizability on both
MixMix-mobile and MixMix-residual. Therefore we encor-
age mixing models from multiple architecture familiy to in-
crease the generalizability.

MobileNetV2 MNasNet ResNet-18 ResNet-50

Data Source

Training Set 64.63 58.86 69.52 74.72

Single-Model 59.81 55.48 69.08 74.05

MixMix 64.01 57.87 70.59 74.58

MixMix-mobile 64.13 57.45 69.23 74.13

MixMix-residual 61.65 56.98 69.74 74.61
References

[1] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. Zeroq: A novel
zero shot quantization framework. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13169-13178, 2020.

[2] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-
hard Scholkopf, and Alexander Smola. A kernel two-sample
test. The Journal of Machine Learning Research, 13(1):723—
773, 2012.

[3] Boris Hanin and Mark Sellke. Approximating continuous
functions by relu nets of minimal width. arXiv preprint
arXiv:1710.11278, 2017.

[4] Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel
Soudry. The knowledge within: Methods for data-free model
compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8494—
8502, 2020.

[5] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classification
with convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 558-567, 2019.

[6] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geome-
try and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482-7491,
2018.

[7]1 Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi
Zhang, Fengwei Yu, Wei Wang, and Shi Gu. Brecq: Pushing
the limit of post-training quantization by block reconstruc-
tion. arXiv preprint arXiv:2102.05426, 2021.

[8] Yuhang Li, Mingzhu Shen, Jian Ma, Yan Ren, Mingxin
Zhao, Qi Zhang, Ruihao Gong, Fengwei Yu, and Junjie
Yan. MQBench: Towards reproducible and deployable
model quantization benchmark. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Bench-
marks Track (Round 1), 2021.

[9] Yuhang Li, Wei Wang, Haoli Bai, Ruihao Gong, Xin
Dong, and Fengwei Yu. Efficient bitwidth search for
practical mixed precision neural network. arXiv preprint
arXiv:2003.07577, 2020.

[10] Sejun Park, Chulhee Yun, Jaeho Lee, and Jinwoo Shin. Min-
imum width for universal approximation. In International
Conference on Learning Representations, 2021.

[11] Mingzhu Shen, Kai Han, Chunjing Xu, and Yunhe Wang.
Searching for accurate binary neural architectures. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, pages 0-0, 2019.

