PoGO-Net: Pose Graph Optimization with Graph Neural Networks

Supplementary Materials

6.1. Overview

In the supplementary materials, we will first provide
more details of the ablation study on the de-noising lay-
ers of the PoGO-Net in §6.2, followed by the discussion on
its capability of generalization by integrating the network
with ORB-SLAM in §6.3. We finally report and analyze the
full experimental result on the Photo Tourism Dataset [60]
in §6.4.

6.2. Ablation Study on De-Noising

In our full network, we arrange the layers by setting a de-
noise layer before every GNN layer, such that the network
updates the connectivity in each iteration by message pass-
ing. To better understand the effects of the de-noise layers,
we conduct the ablation study on the 7Scenes dataset [50]
with PoGO-Net variants. In detail, we randomly remove
the de-noise layers which consist of 50%, 70% and 100%
of the amount of the de-noise layers in the original network,
re-train the networks with the new settings and test them on
the Pumpkin scene testing set with additional noise.

(a) Noise = 10% (b) Noise =20% (c) Noise =30% (d) Noise = 40%

Figure 5: Ablation study with different de-noise layers set-
tings on the 7Scenes Dataset [50], with noise distributed to
a) 10% b) 20% c) 30% d) 40% of the view-graph edges on
the Pumpkin scene.

Specifically, to add the extra corruption into the scene,
we bring in a uniformly increasing noise ranging from 1°
to 10°, and distribute the noise randomly on the 10%, 20%,
30% and 40% of the edges in the initial view-graph. We
repeat the experiment with different noise levels and record
the performance, we also include results of the state-of-the-
art conventional approach Robust-IRLS [10]. The results
are given in Fig. 5.

For ‘GNN-only’ variation, there are only GNN layers in
the network and it is very difficult to initialize the nodes in

the view-graph as it has been witnessed that the errors on the
edges have been severely propagated over the graph during
the initialization. Therefore we first manually filter out the
outlier edges in randomly selected cycles in the view-graph
by enforcing the cycle identity. Similar with ‘GNN only’,
we remove all the de-noise layers in ‘GNN+RANSAC’ but
we pre-process the view-graph with the visual information.
Particularly, we run RANSAC iterations to remove the er-
roneous feature matching between image frames and only
keep the edges with more than 60% valid correspondences.
It can be observed that with the low percentage of edges
corrupted, the PoGO-Net variations with fewer de-noise
layers can still work but yields lower accuracy with increas-
ing noise level, while those equipped with purely GNN
layers perform poorly against the corruptions. When the
noisy edge percentage is high, the performance of all the
PoGO-Net variations deteriorates quickly with the rising
noise. It is also noteworthy that, though the conventional
approach Robust-IRLS [10] leverages robust loss functions,
the performance starts to degrade vastly with more than
20% of the edges corrupted. PoOGO-Net remains to perform
well and achieves steadily high accuracy against developing
noise levels and rising amounts of corrupted edges, further
demonstrating the robustness of the network.

6.3. §5.4 Results on KITTI Odometry [21]

We test PoGO-Net on the KITTI Odometry [21] to
further demonstrate its capability of generalization. Par-
ticularly, we train PoGO-Net with large scale outdoor
datasets including the Cambridge dataset [30] and the Photo
Tourism Dataset [60], which are similar with the KITTI
Odometry scenes in size and scale, followed by the training
of the network on eight sequences in the KITTI dataset. We
test PoGO-Net on Seq.00, Seq.02 and Seq.08 as the most
challenging sequences in the dataset.

Specifically, we first run modified ORB-SLAM [43] on
the whole dataset and use the view-graphs without global
BA (GBA) as the input to the PoGO-Net. In addition, we
tune down the local mapping thread parameters such that
the intensity of local BA is lower, resulting denser and nois-
ier intermediate view-graphs. As shown in Table 5, the in-
put to PoGO-Net are much less accurate compared with the

Table 5: Quantitative results on KITTI Odometry. We report the RMSE(m), mean angular errors(®), global BA iterations
and runtime(s) (PoGO-Net runtime + BA runtime) on CPU, compared with the state-of-the-art conventional PGO approach
utilized by ORB-SLAM.

RMSE/Ang. Err. RMSE/Ang. Err. . .
Seq. (before) (after) # BA iter. Runtime(s)
Frames Scale(m x m) ORB Our Input ORB+GBA Ours+GBA ORB Ours ORB+GBA Ours+GBA
Seq.00 4541 564 x 496 6.68m/15.63° 26.82m/27.29° 5.33m/12.77° 2.03m/1.92° 20 3 24.83 2.03 +3.56
Seq.02 4661 599 x 946 21.75m/17.99° 74.65m/29.87° 21.28m/14.23° 7.66m/1.08° 20 3 30.07 2.62+3.97
Seq.08 4071 808 x 391 46.58m/21.49° 68.29m/28.25° 46.68m/19.68° 5.89m/2.17° 20 4 25.60 239+ 1.88

camera poses given by the regular ORB-SLAM before con-
ducting GBA. Since we leverage MRA to process the PGO,
only the camera orientations are optimized, we then handle
the translation averaging by exploiting g2o [24] with the
camera orientations treated as fixed.

As reported in Table 5, PoGO-Net with GBA has
achieved significantly higher accuracy on all three testing
sequences compared with the state-of-the-art conventional
PGO approach. Moreover, as it requires so many iterations
for the GBA to converge (it might also fail to converge in
some cases), the ORB-SLAM system runs GBA for 20 it-
erations while PoGO-Net requires less than 5 iterations in
all our experiments. We further provide the qualitative re-
sults of running PoGO-Net on the three testing sequences in
Fig. 6, where we record the trajectory initialized by ORB-
SLAM, the trajectory optimized by PoGO-Net and the final
trajectory optimized for the camera translations for each se-
quence. It can be seen that the camera poses are already
noticeably accurate after running PoGO-Net even without
the final translation fine-tuning.

We also notice that PoGO-Net achieves up to 6x faster
processing speed compared with the conventional approach,
validating its potential to be extended to a full SfTM/SLAM
system, fulfilling the real-time requirements.

6.4. Full Results on the Tourism [60]

We report the angular errors and runtime on the Photo
Tourism Dataset [60] in Table 6. It can be seen our pro-
posed network has achieved the best performance on most
of the dataset. Among the datasets Piccadilly (Picca.), Arts
Quad (ArtsQ.) and Trafalgar (Trafag.) are the three largest
datasets with more than 300K edges. While on these three
challenging datasets PoGO-Net falls slightly short for the
conventional approach Robust-IRLS [10] on accuracy, it has
achieved up to 500x faster processing speed.

600 T T 600 T T 600 T T
- - -Ground Truth - - -Ground Truth - - -Ground Truth
5001 |——ORB View-Graph 5001 |—— PoGO-Net 01| ——PoGO-Net+BA
400 400 400
E E E
S 300 S 300 S 300
G B 3
% 200 - % 200 S 200
IS IR S)
100 |- ,'— 100 100 ,'—
1 U
of = 0 ot '
-100 -100 - - - - - -100 - - - - -
-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300
x-translation [m] x-tranglation [m] x-translation [m]
(a) seq.00 Init (b) seq.00 PoGO-Net (c) seq.00 PoGO-Net with BA
1200 T T T T T T 1200 1200 T T T
- - -Ground Truth - - -Ground Truth
1000 | ——ORB View-Grapl 1 1000 1000 | —— PoGO-Net+BA
A R
800 | ’ A== . 500 800
E vOE E
§ 600 e < 600 S 600
= I - =
% 400 1 g 400 % 400
z % S
200 [200 200
)
ot 0 0
200 X X - - - - -200 . . . - - : -200 - - - - : . -
-100 0 100 200 300 400 500 600 2100 0 100 200 300 400 500 600 -100 0 100 200 300 400 500 600
X-translation [m] x-tranglation [m] x-translation [m]
(d) seq.02 Init (e) seq.02 PoGO-Net (f) seq.02 PoGO-Net with BA
500 T T T 500 T T T T T 500
- - -Ground Truth - - -Ground Truth - - -Ground Truth
400 - |—— ORB View-Graph 400 - [—— PoGO-Net R 400 - [—— PoGO-Net+BA -

w
=]
3

w

8

3

o
15
3

y-translation [m]
3

y-translation [m]
8

.
1)
S

y-translation [m]
] ‘ I]

]
C

-100 -100 -100

-400 -200 0 200 400 600 -400 -200 0 200 400 600 -400 -200 0 200 400 600
x-translation [m] x-translation [m] x-translation [m]
(g) seq.08 Init (h) seq.08 PoGO-Net (i) seq.08 PoGO-Net with BA

Figure 6: Qualitative results on Seq.00, 02 and 08 from the KITTI Odometry [2 1] dataset. The leftmost column presents the
initial trajectory given by ORB-SLAM [43] without running global BA, the middle column shows the trajectory after running
PoGO-Net on the initial view-graph, the rightmost column displays the final optimized trajectory by running BA with camera
orientations fixed.

Table 6: Experiment results on the Tourism Dataset [

results are highlighted

]. We report the angular errors (°) and runtime (s) on CPU. The best

IRLS Robust-IRLS Weiszfeld Arrigoni Wang DISCO | NeuRoRA
5S¢ Nodes Edges [9] [10] [25] E R € N T) FoGO-Net
=] mean 3.04 2.71 44 3.9 3.6 - 2.6 1.91
% 247 20297 median 1.06 0.93 1.0 1.2 1.1 5.54 0.6 0.43
= runtime 3.2s 2.8s 8.9s 0.2s 2.6s 470s 0.4s 0.43s
g mean 3.64 3.67 49 6.2 53 - 4.9 2.96
= 627 97206 median 1.30 1.32 1.4 1.2 1.1 7.86 1.2 0.85
< runtime 14.2s 15.1s 84.0s 2.7s 20.6s 3917s 2.2s 1.74s
A mean 1.25 1.22 2.1 4.8 2.0 - 1.2 0.82
Z 474 52424 median 0.58 0.57 0.7 0.9 0.8 6.81 0.6 0.37
= runtime 8.5s 7.3s 41.5s 2.9s 10.1s 1608s 1.0s 0.53s
g mean 2.63 2.26 4.7 3.9 3.5 - 1.6 1.17
‘Q“ 715 64678 median 0.78 0.71 0.8 1.0 0.9 7.48 0.6 0.35
Z. runtime 17.2s 22.5s 80.8s 4.2s 19.5s 4070s 2.0s 1.24s
< mean 5.12 5.19 26.4 22.0 10.1 36.0 4.7 493
8 2508 319257 median 2.02 2.34 7.5 9.7 39 - 1.9 1.75
A~ runtime 353.5s 370.2s 1342.6s 43.7s 118.1s 15604s 5.9s 3.19s
— mean 2.71 2.66 3.8 3.9 2.9 - 1.9 1.52
g 376 20680 median 1.37 1.30 2.1 1.5 1.4 9.12 1.1 0.88
Z runtime 3.5s 4.6 14.4s 1.4s 3.2s 446s 0.2s 0.24s
A mean 4.1 3.99 4.8 10.8 6.2 - 3.0 2.26
A 354 24710 median 2.07 2.09 1.3 1.2 1.1 12.11 0.7 0.81
R~ runtime 3.8s 4.1s 16.7s 0.6s 3.6s 583s 0.4s 0.28s
g mean 2.66 2.69 4.8 13.2 4.6 - 2.3 1.55
i 1134 70187 median 1.58 1.57 1.8 8.2 3.5 35.36 1.3 0.69
R runtime 18.6 214 115.0s 16.8s 19.6s 1559s 1.3s 1.26s
i mean 342 341 4.7 4.6 2.9 - 2.6 1.77
) 508 24863 median 2.52 2.50 2.9 1.8 1.5 10.38 1.4 0.43
& runtime 2.6s 2.4s 17.4s 3.9s 3.6s 479s 0.3s 0.38s
o mean 6.77 6.77 40.9 9.2 6.8 - 5.9 33
« 930 25561 median 3.66 3.85 10.3 4.4 32 26.27 2.0 1.25
= runtime 9.0s 8.6s 42.8s 12.1s 4.1s 466s 0.6s 0.29s
g mean 2.6 245 5.7 4.5 3.5 - 2.5 2.03
% 458 27729 median 1.59 1.53 2.0 1.6 1.3 26.17 0.9 0.72
> runtime 3.4s 4.3s 32.0s 2.5s 4.9s 641s 0.4s 0.12s
o mean 4.3 3.6 18.8 66.8 89.2 - 17.6 6.82
g 7866 101512 median 3.9 34 16.4 439 75.5 54.38 12.6 3.16
« runtime 18.9s 15.2s 1462.7s 354.7s 27.2s 1413s 2.6s 1.54s
s mean 7.2 6.9 7.5 6.0 5.0 - 2.5 2.33
= 394 23784 median 1.4 1.2 2.7 1.7 1.4 12.12 1.1 0.96
p= runtime 3.5s 3.2s 14.5s 0.9s 3.6s 560s 0.2s 0.12s
) mean 9.1 8.2 11.7 19.3 10.1 - 3.9 4.26
5 918 103550 median 3.9 1.2 1.9 2.39 1.8 22.35 1.5 1.44
= runtime 56.9s 48.1s 158.3s 6.0s 25.7s 4085s 2.1s 1.53s
o mean 5.1 4.8 34.4 35.2 6.0 - 27.5 9.88
2 5530 222044 median 4.3 3.5 23.1 15.8 3.2 87.12 7.3 4.53
< runtime 110.2s 116.1s 1980s 189.4s 73.9s 5227s 5.0s 3.86s
& mean 3.7 3.5 15.6 48.6 17.2 - 5.3 3.5
“‘5 5433 680012 median 24 2.0 11.3 13.2 16.0 91.02 2.2 1.7
&= runtime 844.3s 858.4s 5600s 167.4s 319.2s 43616s 15.5s 17.2s

