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In this Appendix, we provide further information, visual-
izations, and qualitative results for our proposed technique.
In Sec. A, we discuss the proposed attack pipeline and the
performance of clean models. Then, in Sec. B we present
further experimental results based on several 3D backdoor
trigger variations. Following that, in Sec. C, we go into
further depth regarding the clean-label attack method, in-
cluding the formulation of the feature disentanglement, its
optimization, and the transferability experiments. Finally,
in Sec. D, we illustrate the exact settings for three defense
methods and the associated attack success rates against
them.

A. Details of Attack Setting

In this section, we supplement details of the attack set-
tings that have not been stated in the original paper, includ-
ing the pipeline of the PointPBA, and the performance of
the clean models on the test set.

A.1. Pipeline of PointPBA

Our point poison-label backdoor attack is described in
detail in the original Sec.4 and is demonstrated in Alg. 1,
where the notations are consistent with the original paper.

Algorithm 1: Poison-label Backdoor Attack
Input: A model structure f , training set PN , injection rate ϵ,

a sample vector δ, a global transformation matrix A, an interaction
shape B, a target label t.

Output: Backdoored model fθ′

1: Random sample ϵ proportion of data in PN , denote them as
P̃ = {z1, · · · , zJ} where J = ⌊ϵN⌋, zj = (Xj , yj)

2: Set P′
N ← PN\P̃

3: for j = 1 to J do
4: Set X′

j ← (I −Diag(δ))XjA+Diag(δ)B

5: Set y′j ← t

6: Set P′
N ← P′

N ∪ (X′
j , y

′
j)

7: end for
8: Train model of structure f on dataset P′

N and obtain fθ′

A.2. Baseline of Clean Models

Here we report the test accuracy (ACC) of four clean 3D
deep models on different datasets. The split of the dataset
and the settings of the training process are consistent with
the original paper. Comparing the data in Tab. 1 with the
results in the original paper, it can be seen that none of
the three proposed attacks (PointPBA-I, PointPBA-O, and
PointCBA) results in a drop of more than 3% in the perfor-
mance of the model.

Table 1. Test accuracy (%) of clean models on different datasets.

Deep Models ModelNet10 ModelNet40 ShapeNetPart
PointNet 89.65 85.09 98.12
PointNet++ 92.07 89.42 98.50
DGCNN 92.62 90.12 98.85
PointCNN 92.18 88.82 98.26

B. Extra Results of 3D Backdoor Attack

In the original paper, we use a sphere as the interaction
trigger and a rotation along the z-axis as the orientation trig-
ger to show the power of the proposed triggers empirically.
To demonstrate the generalizability of our proposed trig-
gers in backdoor attacks, we investigate additional trigger
configurations, such as interaction triggers with different
shapes and orientation triggers along with other axes. We
emphasize that the settings are identical to those in the orig-
inal paper except for the differences in the trigger forms.
The illustration of different triggers is presented in Fig. 1.

B.1. Interaction Trigger of Other Shapes

As shown in Tab. 2, the ASR results for the three shapes
of triggers are almost consistent with the sphere-based in-
teraction trigger. This shows that the shape of the triggers
does not have a significant effect on our proposed backdoor
attack, and it also demonstrates the flexibility and stealth
of this backdoor attack since any physical object can be in-
voked as a backdoor trigger.



Table 2. ASR (%) of proposed PointPBA-I and PointCBA, and the backdoored model’s test accuracy (%) on the clean test set. The
experimental setting is consistent with PointNet++ in the original paper except for the interaction object shapes.

Shapes ACC/ASR (%) of PointPBA-I ACC/ASR (%) of PointCBA
MN10 MN40 SNPart MN10 MN40 SNPart

Cube 91.9/99.7 89.2/98.2 98.3/98.4 91.0 /53.0 88.8/64.3 98.0/45.9
Cylinder 91.3/99.2 89.0/99.0 98.2/97.9 90.7/50.6 88.9/62.0 98.1/47.4
One-point 91.5/97.0 89.3/96.8 98.4/96.7 91.7/45.9 88.9/58.2 98.1/43.8

Figure 1. Illustration of 3D backdoor attack via different trigger
settings. From top to bottom are, the origin point cloud, point
clouds with different shape interaction triggers (cylinder, square,
one point), and point clouds with the different rotation axis of ori-
entation triggers (x-axis, y-axis).

Being seen in Fig. 1, as the smallest shape, the one-point-
based trigger can hardly be noticed by human inspection.
Even if the ASR of the PointCBA is just 45%, due to the
clean label setting for bypassing the label inspection, this
one-point trigger for backdoor attacks is more stealthy, and
therefore more threatening in the real world scenario.

B.2. Orientation Trigger on Other Axes

Tab. 3 provides the results of the backdoor attack based
on the orientation trigger with different rotation axes while

the magnitude of rotation angle remains the same. It is ev-
ident that this is not significantly different from the results
based on the z-axis in the original paper, which indicates
that the effectiveness of the orientation trigger does not de-
pend on the rotation axis.

Table 3. ASR (%) of our proposed PointPBA-O, and the back-
doored model’s accuracy (%) on the clean test set. The experi-
ments are conducted on the orientation trigger along different axes.
Other settings remain the same as the original paper.

Orientation Axes
ACC/ASR(%) of PointPBA-O Attack

MN10 MN40 SNPart
x-axis 91.9/99.2 89.2/98.1 98.7/97.4
y-axis 91.7/99.6 89.1/98.6 98.5/97.7

C. Details of PointCBA
Here, we detail how we optimize the objective of feature

disentanglement, including the specific steps for problem
reformulation and Bayesian Optimization. The comprehen-
sive result of PointCBA transferability is then provided.

C.1. Optimization of Feature Disentanglement

Problem reformulation. The objective of feature disen-
tanglement is demonstrated in Eq. (10) of the original pa-
per. Given a sample Xj , we have the following optimiza-
tion problem to find such ωj

max
ωj

∑
Xi∈Pt\{Xj}

D(ϕθ(XjAωj ), ϕθ(Xi))

s.t. ωj ∈ R
, (1)

where D is a distance metric in feature space Rd and R ⊆
R3 is a range to restrict the rotation magnitude. In prac-
tice we use the normalized Euclidean distance for the dis-
tance metric D. Instead of representation in Euler angles,
we adopt the axis-angle representation of rotation matrix A,
which is defined by a unit vector e indicating an axis and
an angle ωe describing the magnitude of the rotation on the
axis. The advantage of such representation is that the mag-
nitude of perturbation can be simply controlled by a single
variable ωe. With this representation, the feature disentan-
glement function c(·) will be,

c(Xj) = XjAe,ωe

s.t. ∥e∥ = 1, ωe ∈ [0, ωmax]
. (2)



Therefore, the formulated objective of rotation-based fea-
ture disentanglement is,

max
e,ωe

∑
Xi∈Pt\{Xj}

∥ϕθ(XjAe,ωe
)− ϕθ(Xi)∥

∥ϕθ(XjAe,ωe
)∥

s.t. ∥e∥ = 1, ωe ∈ [0, ωmax]

. (3)

Bayesian optimization. Generally speaking, Bayesian
Optimization (BO) is a powerful tool to help find the global
optimum of computationally expensive or black-box func-
tions [1]. Let g : U → R, the problem is to

max
u∈U

g(u) (4)

where U is the domain of decision variable u. The BO
method mainly consists of two steps: 1) first, it uses the
Gaussian Process Regression to set up a prior distribution of
g by observing the function value at several data points ini-
tially, where a mean function and kernel need to be selected
(in our experiment, we use Gaussian Process model to con-
struct the surrogate distribution and Matérn 5/2 kernel for
the covariance matrix); 2) it further optimizes the function
by if more evaluation points of g are allowed. In this proce-
dure, the so-called acquisition function is utilized to select
the next point for evaluation with consideration of explo-
ration and exploitation. Common acquisition functions in-
clude Upper Confidence Bound (UCB), Expected Improve-
ment (EI), and Probability of Improvement (PI), and we
used EI in our design because of its fewer tuning param-
eters and decent performance. EI is defined as the expected
value of improvement over the current best

EIn(u) = En [max (g(u)− g∗n, 0)] , (5)

where n is the number of total evaluated points u1, · · · ,un,
En is expectation taken under the posterior distribution
given the evaluation of g at these points, and g∗n =
maxk≤n g(un) is the current best function value.

We utilize the BO method to help find the best parameter
θ in our attack, the experiment process is shown in Alg. 2.
In addition, we are not directly optimizing a rotation axis
e, but convert it to an equivalent representation (φe, ϑe) in
continuous domain by

φe = arccos(ez) ∈ [0, 180◦]

ϑe = arctan

(
ey
ex

)
∈ [0, 180◦],

(6)

where e = [ex, ey, ez]
⊤.

Setting and result. In the experiment, we implement the
Matérn kernel and length scale of gamma prior Γ(3.0, 6.0)
for the covariance matrix. We also utilize the Latin sampler
for initial sampling with a number of 10. The optimization
of acquisition function EI is conducted via L-BFGS with

Algorithm 2: BO of Feature Disentanglement
Input: Loss L(·); A point cloud X; Acquisition

function EI(·);Threshold ωmax; Iteration
Numbers Nmax; Initial Numbers n0

Output: Best parameters θbest = (ebest, ωbest);
1 Random Initial Points: Compute L(θi|X) for

i = 1, . . . , n0;
2 θbest ← argminθi

L(θi|X);
3 lbest ← L(θbest|X);
4 while n ⩽ Nmax do
5 Fit/Update Gaussian Process by data points:

{(θi, li) : i = 1, . . . , n};
6 θn+1 ← argmaxθ EIn(θ) ;
7 if L(θn+1|x) < lbest then
8 θbest ← θn+1;
9 lbest ← L(θn+1|X);

10 end
11 n← n+ 1;
12 end
13 Return θbest;

16 multistarts and the max iteration for the BO process is
30. We select a sample from ‘Table’ in ModelNet10 and
demonstrate the optimization process of the algorithm on it
with a fixed angle ωe = 25◦. The maximization of feature
disentanglement loss is actually a nonconvex problem with
respect to the angle representation of the rotation axis, thus
we utilize the global optimization method. Finally, we may
achieve a decent solution close to the global optimal point
by using the BO method.

In the original paper, we mentioned the need to obtain
a decent rotation angle to strike a balance between the per-
turbation on the original data and feature disentanglement.
Here we provide a visualization of the poisoned samples
based on different angles in Fig. 2. As it shows, the orig-
inal data combined with a rotation with a small ωe of and
an interaction trigger with a small size is actually difficult
to notice.

C.2. Transferability

We report the comprehensive transferability results of
PointCBA in Tab. 4. The results show that the proposed
PointCBA has comparatively strong transferability between
different models.

Table 4. Attack success rates (%) of PointCBA by transferring the
poisoned dataset across different models.

Clean Model
Backdoored Model

PN PN++ PCNN DGCNN
PN 82.5 40.9 52.1 46.6
PN++ 68.1 53.8 60.6 38.3
PCNN 69.2 48.7 63.4 43.2
DGCNN 65.1 47.1 55.4 46.8



.
Figure 2. Visualization of point cloud after feature disentangle-
ment. The points are from the ‘lamp’ category of ModelNet40.
Different ωmax means different upper bounds for rotation angle
searching in feature disentanglement.

D. Resistance to Defense Methods

D.1. Resistance to Data Augmentation

In this Appendix, we provide more details about the re-
sistance of data augmentation to our attacks. Our data aug-
mentation methods and parameter settings are listed in fol-
lowing: (1) for random jitter, we use a truncated Gaussian
distribution with mean µ = 0, variance σ = 0.01, and
clip at 0.05; (2) for random scaling, we also use a trun-
cated Gaussian distribution with mean µ = 1, variance
σ = 0.1 and clip at 1.3 and 0.7; (3) for random rota-
tion, we imply rotation along the y-axis, same as the typical
implementations[4, 2]. The random angle for rotation is set
under 30◦. The experimental model and are PointNet++ and
ModelNet10, respectively.

The experimental results in Tab. 5 illustrate that the com-
monly used data augmentation approaches are barely resis-
tant to the proposed backdoor attacks. Using PointPBA-
O and PointCBA which contain the rotation transform, we
conduct additional experiments and come to the following
conclusions: 1) When the rotation employed to augmenta-
tion is parallel to the rotation axis of the orientation trigger,
the augmentation effectively resists PointPBA-O. 2) The
ASR of PointCBA remains steady as the angle of rotation
data augmentation rises as shown in Tab. 6. The first con-
clusion is self-evident, and the second conclusion is because
the trigger enhancement will be stronger as the random ro-
tation angle grows, which compensates for the decreased
effectiveness of the feature disentanglement in PointCBA.

Table 5. The ASR(%) towards varying data augmentations for
PointNet++ on ModelNet10.

Augmentation PointPBA-I PointPBA-O PointCBA
None 97.5 95.2 53.8
Jitter 97.3 94.4 47.6
Scaling 96.4 93.7 54.7
Rotation (y-axis) 91.1 89.8 48.2

Table 6. ASR (%) and test accuracy(%) of PointCBA towards
rotation-based data augmentation.

Dataset
ACC/ASR(%) under Rotation Aug

5◦ 10◦ 30◦

SNPart 97.8/46.8 97.5/48.3 97.0/44.3
MN10 92.1/52.2 93.2/50.7 92.3/48.2

Table 7. The ASR(%) towards SOR for PointNet++ on Model-
Net10.

k PointPBA-I PointCBA
2 98.4 51.9
10 96.9 49.7
20 91.2 41.1

D.2. Resistance to SOR

According to [7], SOR operation comprises two influ-
ential factors, k the number of neighbor points and α the
percentage of points that are regarded as outliers. We first
follow the settings in [7] which are k = 2 and α = 1.1 and
conduct the SOR in training the backdoored model. Observ-
ing that SOR does not decrease ASR for PointPBA-I and
PointCBA, we increased k further and present the results
for various k values in Tab. 7. The results indicate that ASR
of the interaction trigger is obviously reduced only when k
exceeds 20. This is because, despite its diminutive size, the
object comprises approximately 30 points, and SOR with a
tiny k does not successfully remove such outliers.

D.3. Resistance to Data Filtering

The authors of [6] propose a data filter method to suc-
cessfully reject poison-label attack samples in 2D images.
Inspired by their approach, we propose a simple method
based on the conventional point cloud descriptors to con-
duct data filtering. Our filtering method is divided into three
steps: 1) Construct a small and clean dataset, where the con-
struction method can be manually filtered from the poten-
tially poisoned dataset. 2) Extract the point cloud descrip-
tors of the data and train a classification model on them. 3)
Use the model to filter the data with large classification loss
in the poisoned dataset.

In the experiment, we construct the clean dataset by ran-
domly sampling 20% data of ModelNet10. The descrip-
tors of the point cloud are the combination of SHOT[5] and
GRSD[3]. We use a Multi-layer Perception (MLP) with one
128-units hidden layer as a classification model and cross-



entropy loss for training. Instead of directly threshing by
loss, we set a prediction confidence threshold of 0.4 for
data filtering. The results show that the PointCBA can resist
such a data filtering method while the PointPBA poisoned
data would be filtered effectively. Specifically, the poisoned
data in PointPBA can be removed with up to 82% filtering
rates, while the PointCBA can resist this defense with a rate
of only 14%. However, we have to suffer from the loss of
benign data with data filtering, which precisely in our ex-
periments can reach up to 24% of the whole dataset.
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