
8. Double-Stage Training Pipeline
In this section, we elaborate the training procedures of

RAIN for multi-agent interacting systems, which consist of
two stages: pre-training stage and formal-training stage.

8.1. Pre-Training Stage

8.1.1 GMP Module

xt�Th+1:t
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Figure 6. The diagram of the auto-encoder structure for pre-
training the GMP module, which consists of an encoding proce-
dure and a decoding procedure.

We employ a standard encoder-decoder structure to pre-
train the GMP by unsupervised learning, with the purpose
of enabling informative and effective feature extraction in
the GMP module. In the auto-encoder structure, the GMP
module serves as the encoding process to generate latent
embeddings for each node. And an auxiliary decoding func-
tion is trained to reconstruct the history information with
the latent embeddings. After the model is well-trained, the
GMP module is able to extract good representation of the
observation information.

The loss function is the standard mean squared error re-
construction loss, which is calculated as

LGMP =
1

NTh

N∑
i=1

t∑
t′=t−Th+1

||xit′ − x̂it′ ||2. (15)

After convergence, we save the parameters of the GMP
module and discard those of the decoder, since we only use
GMP in the following formal-training stage.

8.1.2 SGA-MG Module

In order to enable informative initial reward for the RL-HA
module, we pre-train the SGA-MG module with a fully con-
nected topology. The model architecture is the same as in
Figure 2 except that the GAT is applied to a fully connected
graph. The loss function is a standard mean squared error
loss, which is calculated as

LSGA-MG =
1

NTf

N∑
i=1

t+Tf∑
t′=t+1

||xit′ − x̂it′ ||2. (16)

Algorithm 1: Double-Stage Training Algorithm
Input: history Xt−Th+1:t, true future Xt+1:t+Tf

,
context C, hyperparameters Nft, Ns, E

Initialize the parameters in GMP (φ), RL-HA (ψ)
and SGA-MG (θ);
/* Pre-training Stage */
Pre-train GMP by unsupervised learning with (15);
Pre-train SGA-MG by supervised learning with
(16);
/* Initialize RL */
Initialize the replay buffer D;
Initialize the RL-step index i← 0;
/* Formal-training Stage */
for epoch← 1,2,...,E do

Generate rollout ξ with φ, ψ, θ;
Add rollout ξ into replay buffer D;
i← i+ 1;
/* Train RL-HA */
if i > Ns then

Sample a rollout ξ′ from D;
Update policy and ψ with DDQN;

end
/* Finetune SGA-MG */
for m← 1, 2, ..., Nft do

Sample a case of Xt−Th+1:t and C;
Use GMP to obtain node attributes on G;
Use RL-HA to generate G′;
Use SGA-MG to generate X̂t+1:t+Tf

;
Compute loss by equation (16);
Update θ by back-propagation;

end
end

8.2. Formal-Training Stage

In the formal-training stage, we initialize the GMP and
SGA-MG with pre-trained parameters. Then we perform an
alternating training strategy to train the RL-HA and SGA-
MG alternatively until convergence. The detailed pseudo-
code of the training pipeline of the whole framework is pro-
vided in Algorithm 1.

9. RAIN for Human Skeleton Motions (Cont.)

For human motion forecasting, we employ the state-of-
the-art model [59] as the soft attention based motion gen-
erator in our framework. We strongly encourage the read-
ers to refer to [59] for better understanding the model de-
tails below. Similar to RAIN for the multi-agent interacting
systems, we also employ a double-stage training pipeline,
including a pre-training stage and a formal-training stage.
In the pre-training stage, we pre-train the parameters of a



contextual encoder and the soft attention based motion gen-
erator. In the formal-training stage, we train the RL-HA
module and finetune the motion generator alternatively.

We denote the complete history motions as Xt−Th+1:t

and the future motions as Xt+1:t+Tf
. We have the same

assumption as [59] that Th > Ts+Tf where Ts is the length
of the motion segments used to compute attention weights.

9.1. Pre-Training Stage

First, we use an auto-encoder structure to train an en-
coding function that can extract the contextual information
from the complete history motion sequence. More formally,
the auto-encoder can be written as

Z = Encoding(Xt−Th+1:t), (17)

X̂t−Th+1:t = Decoding(Z), (18)

where Encoding and Decoding functions are neural net-
works. The loss function of training the auto-encoder is
the standard mean squared error reconstruction loss, which
is calculated by

MSE =
1

JTh

J∑
j=1

t∑
t′=t−Th+1

||xjt′ − x̂jt′ ||2, (19)

where J is the number of relative angles between joints in
a skeleton. For the soft attention based motion generator,
since the authors of [59] released their official code and
pre-trained models, we directly load their pre-trained pa-
rameters in the formal-training stage.

9.2. Formal-Training Stage

In the formal-training stage, we alternatively train the
RL-HA module and the motion generator. We define the
motion segments in the same way as [59]. More specifi-
cally, we first divide the complete motion history Xt−Th+1:t

into Th−Ts−Tf+1 segments {Xi:i+Ts+Tf−1}
t−Ts−Tf+1
i=t−Th+1 ,

each of which contains Ts + Tf consecutive frames of hu-
man poses. We use the same setting as [59], where the mo-
tion generator exploits the past Ts frames to predict the fu-
ture Tf frames. The first Ts frames of each segment is used
as a key, and the whole segment is then the corresponding
value. The query is defined as the latest segment Xt−Ts+1:t.

9.2.1 RL-HA Module

In the domain of forecasting human skeleton motions, the
RL-HA module is expected to select the key history mo-
tion segments for the current prediction based on the latest
observation segment. Then the soft attention mechanism
in [59] will further rank the relative importance of the se-
lected key segments, which is employed by the motion pre-
dictor to generate future motions.

The selection of key segments naturally fits into a re-
inforcement learning framework. The definition of obser-
vations, actions and reward functions of the RL-agent are
elaborated in the following.

Observations: The observation O of RL-agent at RL-
step η (≤ TRL) includes a tuple of key, query, contextual
information Z as well as the current segment selection sta-
tus si (0: “retained” or 1: “discarded”). TRL is the upper
bound of RL-steps. The observation Oη is obtained by

Oη = [fk(Xi:i+Ts−1), fq(Xt−Ts+1:t), Z, si,η] , (20)

where fk and fq are mapping functions modeled by neu-
ral networks. Note that the dimension of Oη only depends
on the dimensions of key, query and contextual informa-
tion, which enables the applicability to the scenarios with
varying numbers of history motion segments. The policy
network of RL-agent takes the observation Oη as input and
decides the action at each RL-step.

Actions: There are two possible actions for the RL-
agent: “staying the same” (action 0) and “changing to the
opposite” (action 1). At each RL-step, the RL-agent makes
decision for each history motion segment. The policy can
be written as a = π(O). We do not enforce any constraints
on the selection of motion segments, i.e., there is no lower
/ upper bound on the number of selected segments. The ac-
tions of RL-agent may change the key motion segments af-
ter each RL-step, which further influences the soft attention
based motion generator.

Rewards: The reward consists of two parts: regular re-
wardRreg and improvement rewardRimp. More specifically,
the regular reward is the negative mean squared error of fu-
ture predictions calculated by

Rreg,η = − 1

J

J∑
j=1

t+Tf∑
t′=t+1

||xjt′ − x̂jt′,η||2. (21)

The improvement reward encourages the decrease of pre-
diction error via applying a sign function to the error change
between consecutive RL-steps, which is obtained by

Rimp,η = sign(Rreg,η −Rreg,η−1). (22)

The whole reward is obtained byRη = Rreg,η +βimpRimp,η ,
where βimp is a hyperparameter.

9.2.2 Alternating Training Strategy

The contextual encoding function is initialized with well-
trained parameters in the pre-training stage and fixed in
the formal-training stage. The soft attention based motion
generator is initialized with the pre-trained model in [59].
We perform alternating optimization of RL-HA and mo-
tion generator (MG) modules: (a) train the RL-HA module



Motion Directions Greeting Phoning Posing
millisecond 80 160 320 400 1k 80 160 320 400 1k 80 160 320 400 1k 80 160 320 400 1k
Res-sup [40] 0.41 0.64 0.80 0.92 – 0.57 0.83 1.45 1.60 – 0.59 1.06 1.45 1.60 – 0.45 0.85 1.34 1.56 –
CSM [27] 0.39 0.60 0.80 0.91 1.45 0.51 0.82 1.21 1.38 1.72 0.59 1.13 1.51 1.65 1.81 0.29 0.60 1.12 1.37 2.65
Traj-GCN [34] 0.26 0.45 0.70 0.79 – 0.35 0.61 0.96 1.13 – 0.53 1.02 1.32 1.45 – 0.23 0.54 1.26 1.38 –
DMGNN [31] 0.25 0.44 0.65 0.71 – 0.36 0.61 0.94 1.12 – 0.52 0.97 1.29 1.43 – 0.20 0.46 1.06 1.34 –
LTD-10-10 [39] 0.26 0.45 0.71 0.79 1.35 0.36 0.60 0.95 1.13 1.59 0.53 1.02 1.35 1.48 1.74 0.19 0.44 1.01 1.24 2.55
HisRepItself [59] 0.25 0.43 0.60 0.69 1.27 0.35 0.60 0.95 1.14 1.57 0.53 1.01 1.31 1.43 1.68 0.19 0.46 1.09 1.35 2.32
Ours (hybrid) 0.25 0.46 0.65 0.75 1.34 0.35 0.62 0.99 1.21 1.64 0.49 0.95 1.23 1.35 1.59 0.19 0.43 1.02 1.23 2.46
Motion Purchases Sitting Sitting Down Taking Photo
millisecond 80 160 320 400 1k 80 160 320 400 1k 80 160 320 400 1k 80 160 320 400 1k
Res-sup [40] 0.58 0.79 1.08 1.15 – 0.41 0.68 1.12 1.33 – 0.47 0.88 1.37 1.54 – 0.28 0.57 0.90 1.02 –
CSM [27] 0.63 0.91 1.19 1.29 2.52 0.39 0.61 1.02 1.18 1.67 0.41 0.78 1.16 1.31 2.06 0.23 0.49 0.88 1.06 1.40
Traj-GCN [34] 0.42 0.66 1.04 1.12 – 0.29 0.45 0.82 0.97 – 0.30 0.63 0.89 1.01 – 0.15 0.36 0.59 0.72 –
DMGNN [31] 0.41 0.61 1.05 1.14 – 0.26 0.42 0.76 0.97 – 0.32 0.65 0.93 1.05 – 0.15 0.34 0.58 0.71 –
LTD-10-10 [39] 0.43 0.65 1.05 1.13 2.27 0.29 0.45 0.80 0.97 1.52 0.30 0.61 0.90 1.00 1.67 0.14 0.34 0.58 0.70 1.05
HisRepItself [59] 0.42 0.65 1.00 1.07 2.22 0.29 0.47 0.83 1.01 1.55 0.30 0.63 0.92 1.04 1.70 0.16 0.36 0.58 0.70 1.08
Ours (hybrid) 0.41 0.63 1.07 1.14 2.25 0.24 0.40 0.75 0.96 1.47 0.27 0.58 0.85 0.97 1.58 0.14 0.32 0.53 0.64 0.91
Motion Waiting Walking Dog Walking Together Average
millisecond 80 160 320 400 1k 80 160 320 400 1k 80 160 320 400 1k 80 160 320 400 1k
Res-sup [40] 0.32 0.63 1.07 1.26 – 0.52 0.89 1.25 1.40 – 0.27 0.53 0.74 0.79 – 0.40 0.69 1.04 1.18 –
CSM [27] 0.30 0.62 1.09 1.30 2.50 0.59 1.00 1.32 1.44 1.92 0.27 0.52 0.71 0.74 1.28 0.38 0.68 1.01 1.13 1.77
Traj-GCN [34] 0.23 0.50 0.92 1.15 – 0.46 0.80 1.12 1.30 – 0.15 0.35 0.52 0.57 – 0.27 0.53 0.85 0.96 –
DMGNN [31] 0.22 0.49 0.88 1.10 – 0.42 0.72 1.16 1.34 – 0.15 0.33 0.50 0.57 – 0.27 0.52 0.83 0.95 –
LTD-10-10 [39] 0.23 0.50 0.91 1.14 2.37 0.46 0.79 1.12 1.29 1.86 0.15 0.34 0.52 0.57 1.16 0.27 0.52 0.83 0.95 1.62
HisRepItself [59] 0.22 0.49 0.92 1.44 2.30 0.46 0.78 1.05 1.23 1.82 0.14 0.32 0.50 0.55 1.16 0.27 0.52 0.82 0.94 1.57
Ours (hybrid) 0.21 0.46 0.83 1.03 2.18 0.41 0.71 1.01 1.15 1.72 0.14 0.31 0.50 0.56 1.15 0.25 0.48 0.79 0.91 1.51

Table 5. Comparison of mean angle errors (MAE) of different methods for both short-term (≤ 400 milliseconds) and long-term prediction
(1k milliseconds) on the other 11 actions in the Human3.6M dataset. ”–” indicates that the original paper did not report the result.

full+soft hybrid (w/o GMP) hybrid (w GMP)
Vehicle 0.63/1.28 0.59/1.23 0.54/1.12
Pedestrian 0.32/0.56 0.31/0.54 0.26/0.51

Table 6. 4.0s minADE20/minFDE20 in different ablation settings
(nuScenes).

τ = 2 τ = 5 τ = 10 τ = 20
Vehicle 0.50/1.08 0.52/1.09 0.54/1.12 0.58/1.17
Pedestrian 0.24/0.50 0.25/0.51 0.26/0.51 0.29/0.54

Table 7. 4.0s minADE20/minFDE20 with different τ values
(nuScenes).

with fixed parameters of MG with Double Deep Q-Learning
(DDQN) method [18]; (b) finetune MG with fixed parame-
ters of RL-HA using back-propagation methods.

10. Additional Experimental Results
In this section, we provide complementary experimental

results on the nuScenes and Human3.6M datasets.

10.1. nuScenes Dataset: Traffic Scenarios

Besides the ablation studies (Table 2, 3) in the main pa-
per, we show the results of an additional ablation setting
hybrid (w/o GMP) in Table 6 to illustrate the effectiveness
of GMP module. In this setting, the RL agent can only ob-
serve the self features of each node (agent) without knowing
the relational/social features extracted by GMP, which leads
to larger prediction errors compared to hybrid (w/ GMP).
Note that hybrid (w/o GMP) outperforms full+soft, which

implies the RL based hybrid attention can still help with
motion prediction even without relational features. These
results demonstrate that all modules are indispensable with
improvement.

In our experiments, we used τ = 10 (10 frames in 2.0s).
We show additional results with different τ values in Ta-
ble 7. Generally, the minADE20/minFDE20 reduces as τ
becomes smaller (i.e., the frequency of graph topology in-
ference increases), which implies the advantage of dynamic
prediction mechanism. However, the running time will in-
crease as τ becomes smaller.

10.2. Human3.6M Dataset: Human Motions

We provide the comparison of prediction results on the
other 11 actions for skeleton based human motion forecast-
ing in Table 5. It is shown that Ours (hybrid) achieves the
smallest MAE in most actions as well as in average com-
pared with baselines. The action “Directions” is an interest-
ing exception where HisRepItself outperforms our method.
A potential reason is that in the “Directions” action, there
is no clear pattern of the temporal dependency between the
current observation and previous motions, which makes it
hard for the RL-agent to discriminate and select the appro-
priate history motion segments to pay attention to.

We also visualize the prediction of human skeletons and
the learned hybrid attention weights in typical testing cases
in Figure 7. It shows that our method can accurately fore-
cast the human motions. More specifically, we visualize the
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Figure 7. The visualization of human skeleton motion forecasting of four typical actions with hybrid attention maps. The black skeletons
at the bottom are the latest observation sequences which are used to calculate current attention weights. The purple-green skeletons are
the prediction hypotheses of our method. The blue-red skeletons are the ground truth. In our experimental setting, for each case there
are 31 available history motion segments with a length of 10 frames for the RL hard attention module to select and the soft attention is
only applied to the selected segments. In the hybrid attention maps, darker colors indicate larger attention weights. White color means the
corresponding motion segment is not selected as key information. Best viewed in color.

top four motion segments with the largest four hybrid atten-
tion weights in each case (i.e., the motion segments in the
first two rows). It shows that these segments have similar
patterns with the current observation sequence and thus are
selected as key information, which implies that the learned
hybrid attention is reasonable and interpretable. We also vi-
sualize some irrelevant segments that are discarded by the
model (i.e., the motion segments in the third row). It can be
easily found that these segments are dissimilar to the latest
observation sequence, thus are unimportant for the current
prediction.

In addition, in case (a), (b) and (c), the learned hybrid

attention is sparse, which implies that the model is able to
effectively discriminate and only focus on the key informa-
tion. An interesting exception is case (d), where most his-
tory segments are selected. A potential reason is that most
history segments in this case are very similar to the current
observation sequence, which leads the model to take them
all into account for current prediction.

11. Further Experimental Details

In this section, we provide further details of the exper-
iments, which includes dataset generation, baseline meth-



ods, as well as implementation details.

11.1. Datasets and Evaluation Metrics

11.1.1 Mixed Particle Simulation

In the mixed particle system, there are two types of par-
ticles: charged particles and uncharged particles. The
charged particles are uniformly sampled to carry positive
or negative charges qi ∈ {±q}, which interact with each
other via Coulomb forces, which is given by

Fij = C · (qi · qj) ·
ri − rj
||ri − rj ||3

, (23)

where C is a constant. These charged particles may either
attract or repel each other, although the forces may be weak
when the distance in between is large. However, the mo-
tions of uncharged particles are totally independent since
there is no force applied to them. They move straight with
a constant velocity the same as the random initialization. In
this paper, we have 3 charged particles and 3 non-charged
ones in each case. We generated 8k samples for training,
and 4k samples for validation and testing, respectively.

The simulation process of charged particles is mainly
adopted from NRI [23]. In order to prevent the force di-
vergence issue when two particles move with a very small
distance, we adopt the same strategy as suggested in [23] to
avoid numerical issues, which is to clip the forces to some
maximum threshold. Despite that this is not exactly physi-
cally precise, the generated trajectories are not distinguish-
able to human observers and do not affect the conclusion of
the paper.

The evaluation metric for trajectory prediction in this ex-
periment is the mean squared error, which is calculated by

MSE =
1

NTf

N∑
i=1

t+Tf∑
t′=t+1

||xit′ − x̂it′ ||2. (24)

11.1.2 nuScenes Dataset [4]

The nuScenes dataset is a widely used large-scale driving
dataset with a full set of sensor suite, which was collected
in Boston and Singapore. It provides the point cloud infor-
mation, trajectory annotations of heterogeneous traffic par-
ticipants (e.g., cars, pedestrians and cyclists), as well as the
map information. We processed the original data into seg-
ments with a length of 6 seconds to construct our dataset (2
seconds as history and 4 seconds as future). We generated
about 8k samples for training, and 2k samples for validation
and testing, respectively.

We adopt the standard evaluation metrics in trajectory
prediction, which include minADEK , minFDEK and miss
rate (MR). In this paper, we use the same K = 20 as most

baselines. The MR(@dm) is calculated by

MR(@dm) =
1

N

N∑
i=1

I
(
min
k
||xi,k

t+Tf
− x̂i,k

t+Tf
||2 > d

)
, (25)

where I(·) denotes an indicator function to indicate whether
the current case is a failure case, and d is a manually defined
threshold.

11.1.3 Human3.6M Dataset [21]

The Human3.6M dataset is a widely used skeleton-based
human motion dataset for pose estimation and motion fore-
casting, which includes 15 different activities performed by
7 professional actors. The human skeleton information is
provided in two representations: 3D joint positions and joint
angles. The skeleton has 32 joints, the 3D coordinates of
which can be computed by applying the forward kinemat-
ics. As in [59], we also down-sample the motion sequences
to 25 frames per second, and remove the global rotation,
translation and constant angles. In this paper, we chose rel-
ative angles between joint to represent the skeleton state.

11.2. Baseline Methods

11.2.1 Ablative Baselines

• Ours (true+soft): This is the model that only applies
soft graph attention to the true relation graph. Note that
this model is only used for the experiments on mixed
particle simulation since the true relation graph is not
accessible in real-world scenarios and dataset.

• Ours (full+soft): This is the model that only applies
soft graph attention to a fully connected relation graph.

• Ours (ELBO+soft): This is the model where only the
RL-HA module is replaced by an ELBO based mod-
ule with other modules not changed, which is trained
end-to-end. The purpose of this ablation setting is to
provide a baseline based on an alternative way to ob-
tain hard attention.

• Ours (hybrid, static): This is the model that applies
both RL hard attention to obtain the inferred relation
graph and soft attention to figure out relative impor-
tance. The inferred relation graph remains static dur-
ing the whole prediction horizon and the model per-
forms one-shot prediction.

• Ours (hybrid, dynamic): This model setup is very sim-
ilar to Ours (hybrid, static). The difference is that the
model performs iterative prediction with a fixed hori-
zon of sliding window. The inferred relation graph is
dynamically evolving over time.



• Ours (hybrid): This model setup is only used for hu-
man motion prediction. The RL hybrid attention and
soft attention work together to extract informative his-
tory features for the motion generator in [59].

11.2.2 For Mixed Particle Simulation

• Corr. (LSTM): The baseline method for edge recogni-
tion used in [23].

• LSTM (single) / LSTM (joint): The baseline methods
for state sequence prediction in [23].

• NRI: The NRI model with static latent interaction
graph [23].

• DNRI: A model for neural relational inference with
dynamic interaction graphs [17].

• Supervised: Since the true relation graph is accessible
in the simulation data, we can use supervised learning
to train a binary classifier to infer the existence of the
edges in the graph. The ground truth labels include 0
(w/o edge) and 1 (w/ edge).

11.3. Implementation Details

In this section, we introduce the details of model archi-
tecture, hyperparameters and specific experimental settings
for each dataset.

11.3.1 For Multi-Agent Interacting Systems
We trained the models for 100 epochs for both particle sim-
ulation and nuScenes dataset. They shared the same model
architecture and specific details of model components are
introduced below:

• GMP: The state embedding functions fms , fmn , node
attribute update function fv , and the encoding function
fenc are all three-layer MLPs with hidden size = 64.
During the pre-training stage, the decoding function is
also a three-layer MLP with hidden size = 64. The
context embedding function fc is a four-layer convo-
lutional block with kernel size = 5. The layer structure
is [[Conv, ReLU, Conv, ReLU, Pool], [Conv, ReLU,
Conv, ReLU, Pool]]. The context embedding is only
applied to the “traffic scenario”, where the context in-
formation is the projected point cloud images.

• RL-HA: The maximum RL-step η is set to 10. In the
total reward, the hyperparameters are βimp = βsti =
βpun = 0.01. We also set Ωs = Ωp = 1.0. In the
“traffic scenario”, we define a “success case” where
the end-point error is less than the miss rate threshold
and a “failure case” as the opposite. The stimulation
reward is applied when the current case changes from

“failure case” to “success case”, and the punishment
reward is applied for the opposite situation.

All the coefficients and thresholds in reward function
were decided empirically. Rreg/Rimp reward the overall
improvement of prediction while Rsti/Rpun are mainly
related to endpoint prediction. We found that increas-
ing the weights of Rsti/Rpun could improve both mi-
nADE and minFDE in a certain range while overly
large weights could have negative effects on minADE.
The miss rate thresholds should be specifically decided
for various types of agents.

• SGA-MG: The Embedding LSTM (E-LSTM) and
Generation LSTM (G-LSTM) both have a hidden size
of 128. For the particle simulation, we performed one-
shot prediction with a static inferred relation graph; for
the nuScenes dataset, we performed progressive fore-
casting with a sliding window of 2 seconds (10 frames)
with dynamic relation graphs.

11.3.2 For Human Skeleton Motions
We trained the models for 50 epochs on the Human3.6M
dataset. We adopted exactly the same experimental settings
as [59]. More specifically, during training, we trained the
model to predict the future 10 frames based on the history
50 frames and the attention weights are calculated based
on the latest observation sequence with 10 frames. During
testing, we enabled progressive long-term prediction with a
sliding window to generate future 25 frames.

Specific details of model components are introduced in
the following:

• Encoding / Decoding (pre-training stage): They are
three-layer MLPs with hidden size = 128.

• RL-HA: The maximum RL-step η is set to 10. In the
total reward, the hyperparameter is βimp = 0.01.

• Motion Generator: We adopted the same model archi-
tecture and hyperparameters as in [59].




