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Appendix

A. Efficient Implementation of Attention with
Relative Positional Encoding

The attention with relative positional encoding is com-
puted as

αi,j = eTI,iW
T
QWKeI,j︸ ︷︷ ︸

(1) data-data

+

eTI,iW
T
QWKep,i−j︸ ︷︷ ︸

(2) data-position

+ eTp,i−jW
T
QWKeI,j︸ ︷︷ ︸

(3) position-data

.

In the following context, we use term (2) data-position
(D2P) as an example. For simplicity, we denote eTI,iW

T
Q as

Qi and WKep,i−j as Kr,i−j . In term (2) for any i, j, the
relative distance follows a fixed pattern [6] shown as

D2P =

 Q0Kr,0 Q0Kr,−1 ··· Q0Kr,−Iw+1

Q1Kr,1 Q1Kr,0 ··· Q1Kr,−Iw+2

...
QIw−1Kr,Iw−1 QIw−1Kr,Iw−2 ··· QIw−1Kr,0


where the first row starts with a relative distance of 0 and
ends with a relative distance of −Iw + 1. Subsequent rows
simply offset the first row by increasing amounts. Further-
more, since the relative distance is bounded by Iw − 1 and
−Iw + 1, therefore we can pre-compute all possible values
of Kr,i−j as

K̃r =

 Kr,Iw−1

Kr,Iw−2

...
Kr,−Iw+1


We then slice K̃r with an increasing offset, which can be
done computation-lightly to obtain

Kr =

 Kr,0 Kr,−1 ··· Kr,−Iw+1

Kr,1 Kr,0 ··· Kr,−Iw+2

...
Kr,Iw−1 Kr,Iw−2 ··· Kr,0



(a) Left Right Geometry Visualization (b) Attention Mask
Figure 1. Attention mask visualization, where white indicates al-
lowable attention region while black indicates forbidden attention
region.

The term (2) D2P can then be computed as a matrix prod-
uct between Q and Kr. The term (3) position-data can be
computed similarly, thus, reducing the computation cost of
relative position.

B. Attention Mask

As described in Sect. 3.2.4, if xL, xR represent the x-
coordinates in pixel-space for the projection of a physical
point into the left and right images, then xR ≤ xL for all
physical points (with positive x-axis pointing to the right).
Therefore when searching for correspondences, the network
only needs to search for pixels in the right image that are
to the left of the current pixel position in the left image.
An example is given in Fig. 1(a): If the corner of the table
(highlighted with the circle) is to be matched, the network
only needs to search to the left of the dashed line in the
right image. This can be achieved using a binary attention
mask shown in Fig. 1(b), where for each pixel in the left
image, the allowable attended pixel locations in the right
image marked as white are to the left of source pixel lo-
cation. Mathematically, this binary attention mask can be
achieved by setting the values of forbidden attended pix-
els (marked as black in Fig. 1(b)) in the attention matrix to
negative infinity. Thus, after softmax, the attention values
αh in Equation 2 of those pixels will be zero and they’ll be
excluded from the disparity computation.

C. Relative Positional Encoding

In Fig. 2, we visualize the evolution of feature descrip-
tors as the Transformer updates them without the posi-
tional encoding. It is worth noting the textureless region,
such as the table, does not have distinct patterns to resolve
matching ambiguities.

In contrast, the evolution of feature descriptors with po-
sitional encoding in Fig. 3 propagates the edge information
into the center of the textureless region progressively, which
helps to resolve the ambiguity.



Figure 2. Evolution of feature map without positional encoding. First row - input to Transformer self-attention layers 1-6. Second row -
input to Transformer cross-attention layers 1-6.

Figure 3. Evolution of feature map with positional encoding. First row - input to Transformer self-attention layers 1-6. Second row - input
to Transformer cross-attention layers 1-6.

D. Attention Span

We compute attention span of both the self- and cross-
attention layers, which is the spatial span of pixels that are
above the uniform attention value (i. e., 1/Iw with Iw be-
ing image width). The layer-wise attention span in Fig. 4
illustrates how self- and cross-attention shift from a global
context to local one as processing moves to higher layers
in the network. This is particularly true for cross-attention,
where the final attention span is only around 15 pixels (0.01
of image width).

The evolution of self-attention and cross-attention are
also visualized in Fig. 5 and Fig. 6, where brighter regions
are the more attended regions. It can be observed that the
attention span from the source pixel (labeled as a red cross-
hair) slowly converges to local context as the Transformer
progresses, confirming the quantitative result in Fig. 4. Both
attention mechanisms stay focused on edges even if they
are far away from the source pixel (i.e., not within the local
context). In cross-attention, it can be observed that the final
attention shrinks towards the target pixel (labeled as a blue
cross-hair).

E. Generalization Mechanism

We visualize the input feature maps to the Transformer
using UMAP [13] in Fig. 7, where the dimensionality re-

Figure 4. Attention span of both self- and cross-attention evaluated
on Scene Flow dataset. Image resolution 960×540. Left: attention
span in fraction of image width. Right: attention span in pixels.

duced embedding is trained only on Scene Flow data. Each
data point represents a pixel that the Transformer operates
on. We observe that the representations learned by STTR
cluster into two regions (Fig. 7(a)). To further understand
this clustering phenomenon, we visualize the corresponding
pixels using a color mask belonging to one of the clusters.
The intensity of a pixel in the color mask is higher if it is
closer to the centroids of the cluster. Interestingly, the fea-
ture extractor groups pixels into textured (blue) and texture-
less (red) regions. Pixels with a higher intensity in the color
mask are mostly correlated to texture edges. To verify that
the blue region indeed contains more texture than the red re-
gion, we compute the mean Sobel edge-gradient on the nor-



Figure 5. Evolution of self-attention of left image pixel on left image, with source pixel labeled as red cross-hair. First row - attention map
of self-attention layers 1-6. Second row - attended pixels of self-attention layers 1-6 are highlighted.

Figure 6. Evolution of cross-attention of source left image pixel on right image, with target ground truth pixel labeled as blue cross-hair.
First row - attention map of cross-attention layers 1-6. Second row - attended pixels of cross-attention 1-6 are highlighted.

Table 1. Quantitative comparison of mean edge-gradient based on
intensity computed on each dataset in the blue and red clusters.

Dataset Red Cluster Blue Cluster
Scene Flow 0.46 12.02
MPI Sintel 16.70 19.15
KITTI 2015 4.06 23.67

Middleburry 2014 7.73 27.48
SCARED 17.39 15.42

malized image intensities of each dataset. The result is sum-
marized in Table 1 where, with the exception of SCARED,
all datasets have larger magnitude edge-gradients in the blue
cluster than red cluster, confirming that blue cluster con-
tains more “texture” than red cluster. In Fig. 7(b), we show
that regardless of the domain, the embeddings are always
contained within the same space. We additionally show
the individual UMAP reduction of features extracted from
MPI Sintel, KITTI 2015, Middlebury 2014, and SCARED
dataset on top of Scene Flow in Fig. 8(a-d). We hypothesize
that this implicitly learnt feature clustering improves the
generalization of STTR and makes the Transformer match-
ing process easier.

F. Qualitative result of context adjustment
layer (CAL)

We provide visualizations of context adjustment layer’s
effect in Fig. 9. Comparing the CAL output in Fig. 9(a), the
prediction without CAL in Fig. 9(b) the result lacks smooth-
ness due to lack of cross eipolar-line context.

G. Attention Stride

Since the attention module is flexible with respect to the
stride of features over which to attend, STTR can run at
a faster speed and lower memory footprint at the cost of
performance. We do not have to re-train STTR as attention

(a) Scene flow

(b) All datasets
Figure 7. (a) UMAP visualization of feature map (right) and the
corresponding color mask (bottom left) of input image (top left).
(b) Umap visualization of all dataset.

Table 2. Ablation result on attention stride. Input image resolution
is 960×540. Inference performance reported are median memory
in GB ↓ and speed in Hz ↑ over 100 runs.

Attention 3 px Occ Inference
Stride Error ↓ EPE ↓ IOU ↑ Performance

3 1.26 0.45 0.92 7.4 / 1.35
4 1.43 0.71 0.97 3.8 / 2.76
5 1.70 1.04 0.96 2.2 / 4.36

stride is only an inference hyperparameter. The result is
summarized in Table 2.



(a) MPI Sintel

(b) KITTI 2015

(c) Middlebury 2014

(d) SCARED
Figure 8. UMAP visualization of feature map from each domain.

(a) Disparity with CAL (b) Disparity without CAL
Figure 9. Qualitative result of disparity with/without CAL.

H. Lightweight Implementation

An additional lightweight model is implemented for
STTR for faster inference speed and lighter memory con-

sumption while maintaining the similar performance as
STTR. The major changes include:

– We remove the flexibility in STTR where attention
stride s can change during inference but instead fix it
to s = 4. Thus, the features extracted do not need to be
maintained at the full image resolution any more. This
reduces memory consumption.

– As discussed in Equation 13, the memory consumption
is proportional to the number of heads Nh. On the
other hand, the number of parameters is proportional to
NhCh. Therefore, we can maintain the same number
of parameters while halving memory consumption by
increasing Ch by two and decreasing Nh by two.

We use the same training protocol for the lightweight
model as discussed in Sect. 4. We compare the perfor-
mance of the lightweight STTR and STTR on the Scene
Flow benchmark in Table 3 and cross-domain generaliza-
tion performance on different datasets in Table 4. As shown
in Table 3, the performance of lightweight STTR drops
compared to STTR in Scene Flow evaluation, especially in
terms of 3 px Error and EPE, while inference performance
improves with less memory and faster speed. The general-
ization performance improves in EPE for MPI Sintel, 3 px
Error and EPE for Middlebury 2014 and SCARED, while
worsens in 3 px Error for MPI Sintel and 3 px error and EPE
for KITTI 2015. The occlusion IOU consistently worsens
compared to STTR.

Table 3. Evaluation on Scene Flow. Inference performance re-
ported are median memory in GB ↓ and speed in Hz ↑ over 100
runs.

3 px Occ Inference
Error ↓ EPE ↓ IOU ↑ Performance

STTR (s = 3) 1.26 0.45 0.92 7.4 / 1.35
STTR (s = 4) 1.43 0.71 0.97 3.8 / 2.76

Lightweight STTR 1.54 0.50 0.97 2.6 / 5.50

I. Inference Memory Consumption and Speed

As discussed in Sect. 3.5, STTR can run at a con-
stant memory and speed without a manually limited dispar-
ity range. We compare the inference speed and memory
consumption with the prior work where a larger disparity
range will consume more memory and slow down inference
speed. Since PSMNet [4] uses a feature downsampling rates
of 4 and AANet [16] uses a feature pyramid, we set atten-
tion stride s = 4 for STTR to match the setting in PSMNet.
As shown in Table 5, in order for prior work to predict a
larger disparity range, the memory consumption increases
while inference speed drops. In comparison, STTR runs
with a constant memory consumption and speed.



Table 4. Generalization without fine-tuning on MPI Sintel, KITTI 2015, Middlebury 2014, and SCARED dataset. Trained only on Scene
Flow dataset.

MPI Sintel KITTI 2015 Middlebury 2014 SCARED
3 px Error ↓ EPE ↓ Occ IOU ↑ 3 px Error ↓ EPE ↓ Occ IOU ↑ 3 px Error ↓ EPE ↓ Occ IOU ↑ 3 px Error ↓ EPE ↓ Occ IOU ↑

STTR 5.75 3.01 0.86 6.74 1.50 0.98 6.19 2.33 0.95 3.69 1.57 0.96
Lightweight STTR 5.82 2.95 0.69 7.20 1.56 0.95 5.36 2.05 0.76 3.30 1.19 0.89

Table 5. Evaluation of inference memory in GB ↓ and speed in
Hz ↑ across different disparity ranges. Image resolution (W×H)
and maximum disparity values are in pixels. Reported are median
values across 100 runs. N/A: disparity range exceeds image width.

Network Image
Resolution

Maximum Disparity
192 384 576 768 960

PSMNet [4]

960 × 576

3.9 / 2.21 7.6 / 1.20 11.4 / 0.85 15.1 / 0.62 18.8 / 0.50
AANet [16] 0.6 / 14.01 0.7 / 9.65 0.9 / 6.91 1.1 / 5.59 1.3 / 4.28

STTR 3.8 / 2.76
Lightweight STTR 2.0 / 4.42

PSMNet [4]

672 × 480

2.3 / 3.89 4.5 / 2.00 6.6 / 1.39 N/A
AANet [16] 0.3 / 20.14 0.4 / 14.70 0.5 / 11.06 N/A

STTR 1.8 / 5.77 N/A
Lightweight STTR 0.87 / 9.11 N/A

PSMNet [4]

384 × 192

Resolution Too Small N/A
AANet [16] 0.1 / 22.1 0.1 / 21.4 N/A

STTR 0.3 / 18.9 N/A
Lightweight STTR 0.2 / 25.6 N/A

J. Dataset Information and Pre-processing

Scene Flow [12] FlyingThings3D Full dataset (final
pass) provides realistic artifacts but does not provide occlu-
sion information. Therefore, we subsample the Full dataset
using the corresponding occlusion information from Disp-
Net/FlowNet2.0 dataset. After pre-processing, Scene Flow
contains 21818 training images of resolution 960×540,
with maximum disparity 602 px (0.67 of image width). The
test dataset contains 4248 images with maximum disparity
468 (0.49 of image width). MPI Sintel [3] contains 1063
images of resolution 1024 × 436, with maximum dispar-
ity 487 px (0.46 of image width). KITTI 2015 [14] contains
200 images of resolution 1242×375, with maximum dispar-
ity of 192 px (0.15 of image width). We note that pixels with
disparities larger than 192 are intentionally masked out in
the dataset. Middlebury 2014 [15] quarter resolution subset
contains 15 images of various image resolution, with maxi-
mum disparity of 161 px (0.22 of image width). SCARED
[1] requires additional pre-processing since it only provides
the depth data and corresponding camera intrinsics param-
eters. There are 7 subsets in total, containing 27 videos.
Since subsets {4,5} contain very large camera intrinsic er-
rors [1], we choose to leave them out of our evaluation since
this introduces unnecessary uncertainty. Furthermore, other
than the first frames of each video, subsequent frames are
interpolated using the kinematics information of the robot
with synchronization and kinematics error. Therefore, the
depth values for subsequent frames are not accurate. We
also exclude those images for reliable evaluation. The left
and right 100 pixels were cropped due to invalidity after
rectification. After pre-processing, SCARED contains 19
images of resolution 1080× 1024 with maximum disparity
of 263 px (0.24 of image width).

K. Loose Analogy to Biological Stereo Vision
It has been shown that the biological stereo vision sys-

tem (e. g. that of a human) perceives depth from stereo im-
ages by relying on low-level cortex cues. One example that
demonstrates this effect is the random-dot stereograms ex-
periment [9], where there is no meaningful texture in the
images but only random dots; yet, humans can still perceive
the 3D objects. At the same time, the biological vision sys-
tem imposes geometric assumptions on objects as a piece-
wise smoothness prior [7], which involves mid-level cortex
processing. In a way, STTR emulates the biological stereo
system in that the Transformer processes the images at a
low-level to finds matches between features. STTR then lo-
cally refines the raw disparity using the context adjustment
layer, which is in loose analogy to mid-level vision.

L. Training Time and Number of parameters
The total training time on Scene Flow dataset [12] for

STTR is approximately 120 hours on one Titan RTX GPU
with batch size 1 for 15 epochs. We note that the training
time will vary with the batch size and number/type of GPUs
used. The number of parameters of STTR compared with
contemporary architectures is summarized in Table 6. Other
than LEAStereo [5] which is optimized using Neural Archi-
tecture Search, STTR has the least number of parameters.

Table 6. Number of parameters in contemporary architectures for
stereo depth estimation.

Approach Network Params [M]

3D Convolution

GANet-11 [18] 6.6
PSMNet [4] 5.2
GC-Net[10] 3.5

LEAStereo [5] 1.8

Correlation

iResNet [11] 43
DispNetCorr1D [12] 42

HD3 [17] 39
AANet [16] 3.9

Hybrid GwcNet-g [8] 6.5
Classification Bi3D [2] 37
Transformer STTR (Ours) 2.5
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