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1. Computational Costs
Table 1 gives the cost comparison of SCOUTER and FC

classifier. We can see that, compared with the FC classifier,
SCOUTER requires a similar computational cost (slightly
higher) and a similar number of parameters (slightly lower).
The increase in the computational cost (flops) is because the
xSlot module has some small FC layers (i.e., Q and K),
GRU, and some matrix calculations. However, as shown in
the lower part of Fig. 1, this is not very significant.

On the other hand, as shown in the upper part of Fig. 1,
SCOUTER has more parameters than the FC classifier
when n is roughly in [0, 90]. This is because the FC layers
and GRU, which are shared among all slots, have a certain
number of parameters. For n > 90, SCOUTER uses fewer
parameters than the FC classifier because there are only c′

(64 in our implementation) learnable parameters for each
category. This is much less than the parameter size of the
FC classifier, which usually needs much more parameters
per class (2, 048 parameters for ResNet 50).

Comparing to the differences in the computation costs
and the numbers of parameters of different backbone mod-
els, the additional cost of SCOUTER is almost negligible.

2. Components of xSlot Attention Module
In SCOUTER, we adopt a variant of the slot attention

[9]. We make some essential modifications to several com-
ponents in order to enable explainable classification, while
other components, i.e. the gated recurrent unit (GRU) and
position embedding (PE), remain unchanged, whose effects
on the classification as well as the explainability are un-
explored. To test the performance of the SCOUTER with
and without these components, we consider two variants of
SCOUTER. The first one is the SCOUTER without GRU,
in which we replace the GRU component, which is used to
update slot weights, with an average operation. The second
variant is the SCOUTER without PE, where flattened input
features are directly used without adding position informa-
tion.

In Table 2, we show the performances of SCOUTER+

Table 1. Cost comparison of SCOUTER and FC classifier (n =
100 and input images are with the size of 260× 260).

Models Params (M) Flops (G)
FC SCOUTER FC SCOUTER

ResNet 26 [4] 14.1511 14.1298 3.4238 3.4565
ResNet 50 [4] 23.7129 23.6916 5.9830 6.0171

ResNeSt 26 [17] 15.2253 15.2041 5.1803 5.2130
ResNeSt 50 [17] 25.6391 25.6179 7.7430 7.7762
DenseNet 121 [7] 7.0564 7.0719 3.7536 3.7805
DenseNet 169 [7] 12.6510 12.6435 4.4396 4.4683
MobileNet 75 [5] 1.1194 0.6537 0.0563 0.0812

MobileNet 100 [5] 4.3301 3.0859 0.3154 0.3421
SeResNet 18 [6] 11.3169 11.3509 2.6473 2.6726
SeResNet 50 [6] 26.2439 26.2226 5.6758 5.7098

EfficientNet B2 [14] 7.8419 7.8437 1.0250 1.0564
EfficientNet B5 [14] 28.5457 28.5244 3.6391 3.6721
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Figure 1. Flops and parameter sizes of SCOUTER and FC classi-
fier with ResNet 50.

and SCOUTER− as well as their variants in several perfor-
mance metrics including computation costs, classification
accuracy, and explainability. We can see that SCOUTER
with all the components gets better results in most metrics
than the variants, except for computation costs. The absence
of GRU or PE not only causes a decrease of the classifica-
tion accuracy, but also some deterioration on all explain-
ability metrics, which proves their necessity.



Table 2. Performance comparison of SCOUTER and its variants on a subset (n = 100) of the ImageNet dataset. λ is set to 10 during
training and ResNeSt 26 is adopted as the backbone. The explanation performance is measured on the GT category for the positive
explanation and on the least similar class (LSC) for the negative explanation.

Explanation Type Variants Computational Costs Classification Explainability
Params (M) Flops (G) Accuracy Precision IAUC DAUC

Positive
SCOUTER+ 15.2041 5.2130 0.7991 0.9257 0.7647 0.2713

w.o. GRU 15.1791 5.1901 0.7961 0.9219 0.7456 0.2866
w.o. PE 15.2041 5.2130 0.7974 0.8973 0.7557 0.3002

Negative
SCOUTER− 15.2041 5.2130 0.7946 0.8101 0.6730 0.7333

w.o. GRU 15.1791 5.1901 0.7910 0.7904 0.5959 0.7529
w.o. PE 15.2041 5.2130 0.7903 0.8067 0.6141 0.7661
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Figure 2. The classification performance of FC classifier,
SCOUTER+, and SCOUTER− when 2 ≤ n ≤ 1000. We show
the violin plots as well as the average value for SCOUTER+ and
SCOUTER−, while the FC classifier is only with the average
value.

3. Classification Performance when n > 100

Training of SCOUTER becomes unstable when the cat-
egory number n of the ImageNet [2] subsets is larger than
100. One possible reason is that it is difficult to find consis-
tent and discriminative supports when there are many cat-
egories. Fig. 2 shows the classification performance when
n > 100. The number of independent runs of training is
increased to 5 as the training process becomes unstable and
often results in failures (low classification accuracy) when
n > 100. λ is set to 10. ResNeSt 26 [17] is adopted as the
backbone, with batch size of 70 and training epoch num-
ber of 20 (both are same as the settings of the experiments
in the main paper). We can see that, although sometimes
SCOUTER+ and SCOUTER− can achieve similar perfor-
mance with the FC classifier when n < 400, they become
significantly unstable with the increase of category number
n. As stated in the main paper, SCOUTER can only be used
in small-or medium-sized datasets due to this issue.

4. Inter-and Intra-Category Explanation
To better understand (i) what supports SCOUTER uses

as the basis for its decision making, (ii) how these sup-

ports can be differentiated among different categories, and
(iii) whether they are being consistent for images in the
same category, we give some additional visualization on the
MNIST dataset [8] in Figs. 3 and 4 for SCOUTER+ and
SCOUTER−, respectively. MNIST is adopted here as simi-
larities and dissimilarities among categories (digits) are ob-
vious and are easier to understand than ImageNet. In these
two figures, (a) is for the inter-category visualization, which
shows what the supports for the “Predicted” category look
like given the image of the “Actual” category. Whereas, (b)
is for intra-category visualization, which shows the support
for different images of the same category. For the latter, we
use the digit 6 as an example and the first ten samples of
category 6 in the test set of MNIST are used.

In the inter-category visualization in Fig. 3, we can see
that SCOUTER+ successfully finds supports for the im-
ages of ground-truth (GT) categories. Notably, it also finds
weaker supports for some categories with similar appear-
ances, e.g., the supports for the prediction of “why 5 is 6”
(as the lower half of this hand-wrote 5 digit is a little con-
fusing and is very close to the lower part of 6), as well as
the prediction of “why 0 is 9” and “why 8 is 9” (both 0 and
8 have a circle like the one in 9).

Similarly, in Fig. 4, we can see that SCOUTER− finds no
supports for the images of the GT categories, while it finds
strong supports for the non-GT categories. As digit recogni-
tion is an easy task, SCOUTER− can use some very simple
supports to deny most non-GT categories. For example, in
the prediction of “why 1 is not [non-GT categories]”, all
the slots of SCOUTER− find that the top end of the vertical
stroke is 1’s unique pattern, thus, they can deny all other
categories with this support. Among some visually similar
categories, the negative explanations are more informative.
For example, in the visualization of “why 9 is not 1” and
“why 9 is not 7”, SCOUTER− precisely highlights the dis-
criminative regions, without which 9will look like the other
two digits.

Also, in intra-category visualization, both SCOUTER+

and SCOUTER− show consistent supports for the images
of the same category. When predicting “why 6 is 6”,
SCOUTER+ always looks at the region close to the cross-



ing point of the bottom circle and vertical stroke. For expla-
nation “why 6 is not 2”, SCOUTER− always recognizes
the presence of vertical stroke, which does not exist in the
digit 2, as well as the missing of the bottom horizon stroke,
which is essential for 2.

5. Some More Visualizations
In this section, we show more visualization results for

ImageNet using SCOUTER and competing methods, in-
cluding I-GOS [11], IBA [12], CAM [18], GradCAM [13],
GradCAM++ [1], S-GradCAM++ [10], Score-CAM [16],
SS-CAM [15], and Extremal Perturbation [3].

Subsets with n = 100 categories are used for training
and visualization. Besides the first n categories (as used in
the main paper), we also use several other subsets (with the
same category number) in the ImageNet dataset, in order
to provide visualizations with more diversity. Figs. 5 and 6
give examples of the positive explanation, while Fig. 7 gives
examples of the negative explanation.

Among the positive explanations, we can see that
SCOUTER+ can find reasonable and precise sup-
ports. Especially for the image of “parallel bars”,
SCOUTER+ can provide an explanatory region along the
horizon bar. In addition, SCOUTER− with the least similar
class (LSC) also finds supports on the foreground objects,
which can be used to deny the LSC categories but are not
enough for admitting the GT category, which conforms the
quantitative results in the main paper.

Moreover, as shown in Fig. 7, SCOUTER− can give
very detailed explanations when different categories with
high visual similarities, e.g., the differences in the eyes and
ears between “Labrador retriever” and “golden
retriever”, and the differences of the horn between
“water ox” and “ox”.

Figs. 8 and 9 show some more examples of two medi-
cal applications (glaucoma diagnosis and artery hardening
diagnosis). We can see that SCOUTER+ and SCOUTER−
perform well in both tasks.
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(a) Explanation Confusion Matrix: why SCOUTER+ predicts the images of [Actual Category] are [Predicted Category]

(b) Explanation Consistency: why SCOUTER+ predicts the images of a same category (“6”) are “6”
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Figure 3. Visualized positive explanations using SCOUTER+ (with ResNet 18 [4] and λ = 1) on the MNIST dataset [8].
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(a) Explanation Confusion Matrix: why SCOUTER- not predicts the images of [Actual Category] are [Predicted Category]

(b) Explanation Consistency: why SCOUTER- predicts the images of a same category (“6”) are not “2”
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Figure 4. Visualized negative explanations using SCOUTER− (with ResNet 18 [4] and λ = 1) on the MNIST dataset [8].
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Figure 5. More examples of visualized positive explanations (Part 1). The number in parentheses represents the λ value used in the
SCOUTER training.
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Figure 6. More examples of visualized positive explanations (Part 2). The number in parentheses represents the λ value used in the
SCOUTER training.



Input SCOUTER-(0.5) SCOUTER-(1) SCOUTER-(2) SCOUTER-(3) Example Image of
the Wrong Class

Why this (an image of “water ox”) is not an image of “ox”?

Why this (an image of “baseball”) is not an image of “basketball”?

Why this (an image of “black and gold garden spider”) is not an image of “barn spider”?

Why this (an image of “warthog”) is not an image of “wild boar”?

Why this (an image of “chimpanzee”) is not an image of “gorilla”?

Why this (an image of “Labrador retriever”) is not an image of “golden retriever”?

Figure 7. More examples of visualized negative explanations for similar categories. The number in parentheses represents the λ value used
in the SCOUTER training.
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Figure 8. More examples of visualized explanations for glaucoma diagnosis on three positive samples using SS-CAM, IBA, SCOUTER+,
and SCOUTER−. The first three methods are for “why this is glaucoma” while SCOUTER− is for “why this is not normal”.
SCOUTER shows explanations covering only related regions (vessel shape changes), which have been validated by two doctors.
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Figure 9. More examples of visualized explanations for artery hardening diagnosis on three “moderate” samples using SS-CAM, IBA,
SCOUTER+, and SCOUTER−. The first three methods are for “why this is moderate” while SCOUTER− is for “why this is not none”.
The white circles give the approximate location of the symptoms (shape changes on the vessel wall of the vein, which are caused by the
increased blood pressure in the artery). SCOUTER gives precise explanations which are mostly within the symptom region and precisely
on the wall of the vein. The explanations of SS-CAM are off the target in the first row and on the wrong vessels (artery) in the first and the
third rows while IBA fails to find the symptom in the second and the third rows.


