
Supplementary Material for “Towards Efficient Graph Convolutional Networks
for Point Cloud Handling”

Yawei Li1*, He Chen2*, Zhaopeng Cui3, Radu Timofte1, Marc Pollefeys1,4,
Gregory Chirikjian2,5, Luc Van Gool1,6

1ETH Zürich, 2Johns Hopkins University, 3State Key Lab of CAD&CG, Zhejiang University,
4Microsoft, 5National University of Singapore, 6KU Leuven, Belgium
yawei.li@vision.ee.ethz.ch, hchen136@jhu.edu, zhpcui@gmail.com

In this supplementary, we first give the detailed proof of
Theorem 1 in the main paper in Sec. 1. Then we describe
the implementation details in Sec. 2. Sec. 3 shows the vi-
sualization of the features in the proposed network. Sec. 4
includes more experimental results.

1. Proofs

In this section, we provide the detailed proof of both the
upper and lower bounds of Theorem 1.

Proof. Upper bound. For the simplicity of analysis, inner
product and summation are selected as the edge function
and the aggregation operation in Theorem 1. Thus, the the-
orem is derived under the assumption that the graph convo-
lution has the following form

x′
i = [x′

i1, · · · ,x′
im, · · · ,x′

iM ], (1)

x′
im =

K∑
k=1

< θm,x
k
i >, (2)

where Θ = {θ1,θ2, · · · ,θM} is the trainable parameters
of the MLP with M output channels. Then the squared dis-
tance between two points x′

i and x′
j after the graph convo-

*Co-first author.

lution is

‖x′
i − x′

j‖22 =

M∑
m=1

(x′
im − x′

jm)2 (3)

=

M∑
m=1

(

K∑
k=1

< θm,x
k
i >−

K∑
k=1

< θm,x
k
j >)

2

(4)

=

M∑
m=1

(

K∑
k=1

< θm,x
k
i − xk

j >)
2 (5)

≤
M∑

m=1

K

K∑
k=1

< θm,x
k
i − xk

j ) >
2

(6)

≤ K
M∑

m=1

K∑
k=1

‖θm‖22‖xk
i − xk

j ‖22. (7)

The inequality in Eqn. 6 follows that the arithmetic mean is
not larger than the quadratic mean while the inequality in
Eqn. 13 follows Cauchy–Schwarz inequality. Assume that
the parameters θm in the network are random variables that
follows Gaussian distribution with 0 mean and σ2 variance.
Then the distance ‖x′

i−x′
k‖22 is also a random variable and

the expectation is expressed as,

E[‖x′
i − x′

j‖22] ≤ E[K
M∑

m=1

K∑
k=1

‖θm‖22‖xk
i − xk

j ‖22] (8)

= K

M∑
m=1

K∑
k=1

E[‖θm‖22]‖xk
i − xk

j ‖22 (9)

= σ2dKM

K∑
k=1

‖xk
i − xk

j ‖22, (10)

where the term
∑

k ‖xk
i − xk

j ‖22 is just the neighborhood
distance between xi and xj .



Proof. Lower bound. In Eqn. 5, let

am =

K∑
k=1

< θm,x
k
i − xk

j >. (11)

Thus, Eqn. 5 become

M∑
m=1

(

K∑
k=1

< θm,x
k
i − xk

j >)
2 =

M∑
m=1

a2
m. (12)

Using Cauchy-Schwarz inequality

M∑
m=1

ambm ≤

√√√√ M∑
m=1

a2
m

√√√√ M∑
m=1

b2
m (13)

and letting b2
m = 1/M , then the inequality in Eqn 13 be-

comes (
1√
M

M∑
m=1

am

)2

≤
M∑

m=1

a2
m. (14)

Thus, the lower bound of Eqn 5 becomes

‖x′
i − x′

j‖22 =

M∑
m=1

(

K∑
k=1

< θm,x
k
i − xk

j >)
2 (15)

≥ 1

M

(
M∑

m=1

K∑
k=1

< θm,x
k
i − xk

j >

)2

(16)

=
1

M
<

M∑
m=1

θm,

K∑
k=1

xk
i − xk

j >
2 . (17)

Let φ =
∑M

m=1 θm and z =
∑K

k=1 xk
i − xk

j . Then

‖x′
i − x′

j‖22 ≥
1

M
< φ, z >2 (18)

=
1

M
(

d∑
l=1

φl, zl)
2 (19)

=
1

M

d∑
l=1

d∑
n=1

φlφnzlzn. (20)

Then taking the expectation on both sides, the inequality
becomes

E[‖x′
i − x′

j‖22] ≥ E[
1

M

d∑
l=1

d∑
n=1

φlφnzlzn] (21)

=
1

M

d∑
l=1

d∑
n=1

E[φlφn]zlzn. (22)

Note that the elements of θm follow independent Gaus-
sian distribution with 0 mean and σ2 variance and φ =

∑M
m=1 θm. Thus, the elements of φ follows indepen-

dent Gaussian distribution with 0 mean and Mσ2 variance.
Thus,

E[φlφn] =

{
0 l 6= n

Mσ2 l = n
. (23)

Thus, the lower bound becomes

E[‖x′
i − x′

j‖22] ≥
1

M

d∑
l=1

Mσ2z2l (24)

= σ2‖z‖22 (25)

= σ2‖
K∑

k=1

xk
i − xk

j ‖22 (26)

= σ2K2‖ 1
K

K∑
k=1

xk
i −

1

K

K∑
k=1

xk
j ‖22. (27)

Thus, the distance between two points after graph convo-
lution is lower bounded by the neighborhood centroid dis-
tance of the corresponding points before graph convolution
up to a scaling factor.

2. Implementation Details
2.1. Classification of Point Cloud

For classification task, we used ModelNet40 dataset.
ModelNet40 dataset consists of 12,311 meshed CAD mod-
els of 40 categories. We follow the experimental setting of
PointNet [4, 5] and DGCNN [6]. In order to evaluate our
performance, we uniformly sample points of different num-
bers from the mesh faces to formulate point clouds. The
number of parameters of all the networks is 1.8k. Inference
runtime is measured on a single Titan Xp GPU and the batch
size is reduced to 16 for running with 2048 points.

2.2. Segmentation of Point Cloud

For part segmentation task, we used ShapeNetPart
dataset. In ShapeNetPart, there are 16 object categories and
16,881 3D shapes, annotated with 50 parts. 2048 points are
sampled from each shape. For semantic segmentation task,
we used Stanford Large-Scale 3D Indoor Spaces Dataset
(S3DIS). S3DIS consists of indoor scenes of 272 rooms
in six indoor areas, annotated with 13 semantic categories.
Our experiments follow the standard training, validation,
and test split of DGCNN. Part segmentation experiments
are run on two Titan Xp GPUs and the batch size is 32.

2.3. Surface Reconstruction of Point Cloud

The visualization of meshes is done on the platform
Open3D [8].



3. Feature Visualization
In order to validate that the neighborhood geometric fea-

tures are preserved after all the operations and acceleration
strategies, experiments are designed by extracting and visu-
alizing the feature map as a distance colormap rendered on
the 3D point cloud. The evolution of feature space w.r.t. the
number of epochs is shown in Fig. 1. The local structures
are preserved and converge to smaller and smaller regions as
the network propagates. Gradually, the yellow points (rel-
atively nearer points in the latent space) all lie in the green
dot region(KNN), this proves the effectiveness of the local
feature extraction is kept by the accelerated network. By
observing the figure, we can come to the conclusion that
such convergence trends to grow as the iterations move on.
At Epoch 250 when the loss of the classification neural net-
work converges, the yellowish neighbor features also con-
verge into a very small region, and this region is smaller
than the KNN represented by the green points. Fig. 2 shows
more results of feature space for point cloud classification
on ModelNet40. Fig. 3 shows more results of feature space
for part segmentation task. The convention is the same as
Fig. 8 of the main paper.

4. Additional Experimental Results
In this section, we show additional experimental results.

Fig. 4 shows the computational resource comparison for the
task of semantic segmentation. The accelerated network is
more efficient than the original network in terms of infer-
ence time, GPU memory consumption, and computational
complexity. A study of how a wide range of K and P val-
ues (defined in Sec. 4.2) affects performance is carried out
in Fig. 6 for point cloud classification. Fig. 7 presents the
ablation study of performance for semantic segmentation
w.r.t. a wide range of parameters. The final parameters K
and P are selected according to the ablation study. Fig. 5
shows more qualitative results for surface reconstruction.
As shown in the figure, the accelerated network leads to
reconstructed surfaces similar to that from the original net-
work.

5. Extension to other tasks.
The proposed method in this paper could be applied

to other tasks such as semi-supervised learning. Semi-
supervised learning can be regarded as a research direc-
tion parallel to efficient computation. It aims at using
fewer samples or labels for learning on point clouds [2,
1, 3, 7]. And the core problem is the design of the con-
straints and losses, and label propagation etc.Most of the
semi-supervised methods are model-agnostic. PointNet and
DGCNN are the commonly used backbone networks. Thus,
it is straightforward to replace backbones with ours while
keeping the losses and training protocols.

References
[1] Mingmei Cheng, Le Hui, Jin Xie, and Jian Yang. Sspc-net:

Semi-supervised semantic 3d point cloud segmentation net-
work. arXiv preprint arXiv:2104.07861, 2021. 3

[2] Jilin Mei, Biao Gao, Donghao Xu, Wen Yao, Xijun Zhao, and
Huijing Zhao. Semantic segmentation of 3d lidar data in dy-
namic scene using semi-supervised learning. IEEE Transac-
tions on Intelligent Transportation Systems, 21(6):2496–2509,
2019. 3

[3] Omid Poursaeed, Tianxing Jiang, Han Qiao, Nayun Xu, and
Vladimir G Kim. Self-supervised learning of point clouds via
orientation estimation. In International Conference on 3D Vi-
sion, pages 1018–1028. IEEE, 2020. 3

[4] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 652–660, 2017. 2

[5] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017. 2

[6] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog), 38(5):1–12, 2019. 2

[7] Xun Xu and Gim Hee Lee. Weakly supervised semantic
point cloud segmentation: Towards 10x fewer labels. In Proc.
CVPR, pages 13706–13715, 2020. 3

[8] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 2



Figure 1: Qualitative result on Modelnet40. (a), (b) Input space and last-layer feature space rendered as colormap between
the red point and the rest points at epoch 0. The green points are KNN of the red point. (c), (d) follow the same layout with
(a), (b) at epoch 250.

Figure 2: Renderings of input space and feature space as colormap between the red point and the rest of the points on
ModelNet40 dataset. The green points represent KNN of the red point. (a) represents the input space. (b) represents the
feature space extracted from the second layer of the network. (c) represents the feature space extracted from the last layer of
the network. (d), (e),and (f) respectively follows the same layout with (a), (b), and (c).



Figure 3: Visualization of the point distance across the accelerated network for part segmentation task. The distance of points
to the red point in the figures is computed. Lighter color means closer distance. (a) The input shape. (b) Distance between
points in the raw data. (c)-(e) Distance between point in the feature space from Layer 1, Layer 2, Layer 3 of the accelerated
network. (f) Segmentation result. The accelerated network could still capture long-range dependency between points.



1000 2000 3000 4000

Number of Points

0

50

100

150

200

In
fe

re
n

c
e

 R
u

n
ti
m

e
 [

m
s
]

DGCNN (Semantic Segmentation)

Accel. (Semantic Segmentation)

(a) Runtime

1000 2000 3000 4000

Number of Points

0

5

10

15

M
a

x
im

u
m

 G
P

U
 m

e
m

o
ry

 [
G

B
]

DGCNN (Semantic Segmentation)

Accel. (Semantic Segmentation)

(b) GPU memory

1000 2000 3000 4000

Number of Points

0

50

100

150

200

250

300

F
L

O
P

s
 [

G
]

DGCNN (Semantic Segmentation)

Accel. (Semantic Segmentation)

(c) FLOPs

Figure 4: Comparison between DGCNN and the accelerated version on point cloud semantic segmentation. (a) Runtime,
(b) GPU memory consumption, and (c) FLOPs are reported for comparison.The proposed method can achieve significant
reduction of computation resources.

Figure 5: Qualitative results of surface reconstruction. (a) Input point cloud. (b), (c) Surface and normal map reconstructed
by Point2Mesh. (d), (e) Surface and normal map reconstructed by our method.



Figure 6: Ablated experimental result of different hyper-parameter choices.(a) Ablation study of overall acc. w.r.t parameters
K and P for classification task. Values calculated are the points on the grid, and the hotmap is derived by bilinear interpolation.
(b) follows the same layout as (a) for balanced acc. of classification task. (c), (d), (e) resp. follow the same layout as (a) for
overall acc., balanced acc., and mean IoU of segmentation task.

Figure 7: (a) Ablation study of overall acc. w.r.t parameters K and P. Values calculated are the points on the grid, and the
hotmap is derived by bilinear interpolation. (b) and (c) follows the same layout with (e) for balanced accuracy and mean IoU.


