
Supplementary Material: Universal Representation Learning from Multiple
Domains for Few-shot Classification

Wei-Hong Li, Xialei Liu, and Hakan Bilen
VICO Group, University of Edinburgh, United Kingdom

groups.inf.ed.ac.uk/vico/research/URL

1. Implementation details
In all experiments we build our method on ResNet-18 [5]

backbone for both single-domain and multi-domain net-
works.

1.1. Training details of single-domain models

We train one ResNet-18 model for each training dataset.
For optimization, we follow the training protocol in [4].
Specifically, we use SGD optimizer and cosine annealing
for all experiments with a momentum of 0.9 and a weight
decay of 7× 10−4. The learning rate, batch size, annealing
frequency, maximum number of iterations are shown in Ta-
ble 1. To regularize training, we also use the exact same data
augmentations as in [4], e.g. random crops and random color
augmentations.

Dataset learning rate batch size annealing freq. max. iter.

ImageNet 3× 10−2 64 48,000 480,000
Omniglot 3× 10−2 16 3000 50,000
Aircraft 3× 10−2 8 3000 50,000
Birds 3× 10−2 16 3000 50,000

Textures 3× 10−2 32 1500 50,000
Quick Draw 1× 10−2 64 48,000 480,000

Fungi 3× 10−2 32 15,000 480,000
VGG Flower 3× 10−2 8 1500 50,000

Table 1. Training hyper-parameters of single domain learning.

1.2. Training details of our method

In the multi-domain network, we share all the layers but
the last classifier across the domains. To train the multi-
domain network, we use the same optimizer with a weight
decay of 7× 10−4 and a scheduler as single domain learn-
ing model for learning 240,000 iterations. The learning
rate is 0.03 and the annealing frequency is 48,000. Similar
to [13] that the training episodes have 50% probability com-
ing from the ImageNet data source, each training batch for
our multi-domain network consists of 50% data coming from
ImageNet. In other words. The batch size for ImageNet is
64× 7 and is 64 for the other 7 datasets.

We set λf and λp as 4 for ImageNet and 1 for other
datasets, respectively. And we linearly anneal λ by λ ←
λ × (1 − t

T ), where, t is the current iteration and T is
the total number of iterations to anneal λ to zero. Here,
T = k × (anneal. freq.), where anneal. freq. is 48,
000 in this work. We search the k = {1, 2, 3, 4, 5} based on
cross-validation over the validation sets of 8 training datasets
and k is 5 (i.e. T = 240, 000) for ImageNet, is 2 for Om-
niglot, Quick Draw, Fungi and is 1 for other datasets. For
all experiments, early-stopping is performed based on cross-
validation over the validations sets of 8 training datasets.

For the optimization of feature adaptation during meta-
test stage, we initialize ϑ as an indentity matrix, which allows
the NCC to use the original features produced by our univer-
sal network and optimize ϑ from a good start point. Similar
to the optimization in [4], we optimize ϑ for 40 iterations
using Adadelta [16] as optimizer with a learning rate of 0.1
for first eight datasets and 1 for the last five datasets.

2. More results
In this section, we first evaluate each single-domain

model for few-shot classification on each test dataset. We
then show complete results on varying-way five-shot and
five-way one-shot settings. We also evaluate the effect of the
adaptors for aligning features in knowledge distillation. As
the code of Meta-dataset has been updated, we report results
using the updated evaluation protocol from Meta-Dataset
and compare our method with Cross-Transformer [3] and
Transductive CNAPS [6] methods. Finally more qualitative
results and global retrieval results are reported.

2.1. Complete results of single domain learning

To study the universal representation learning from multi-
ple datasets, we train one network on each training dataset
and use each single-domain network as the feature extractor
and test it for few-shot classification in each dataset. This
involves evaluating 8 single-domain networks on 13 datasets
using Nearest Centroid Classifier (NCC). Table 2 shows
the results of single domain learning models, where each



Test Dataset
Train Dataset

ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi Vgg Flower

ImageNet 55.8± 1.0 17.1± 0.6 21.7± 0.7 25.4± 0.8 24.2± 0.8 24.1± 0.8 32.9± 0.9 25.0± 0.8
Omniglot 67.4± 1.2 93.2± 0.5 58.2± 1.2 58.7± 1.4 57.3± 1.4 78.4± 1.0 57.6± 1.3 54.6± 1.3
Aircraft 49.5± 0.9 16.8± 0.5 85.7± 0.5 31.4± 0.8 26.0± 0.7 23.8± 0.6 31.0± 0.7 24.6± 0.6
Birds 71.2± 0.9 13.0± 0.6 19.9± 0.7 65.0± 0.9 19.6± 0.7 16.7± 0.7 42.8± 1.0 28.9± 0.8

Textures 73.0± 0.6 25.0± 0.5 38.6± 0.7 42.2± 0.7 54.9± 0.7 38.6± 0.6 54.1± 0.7 42.3± 0.7
Quick Draw 53.9± 1.0 51.0± 1.0 38.8± 1.0 38.2± 1.0 36.8± 0.9 82.8± 0.6 37.7± 0.9 39.7± 1.0

Fungi 41.6± 1.0 9.1± 0.5 14.9± 0.7 25.5± 0.8 15.6± 0.7 12.5± 0.6 65.8± 0.9 23.3± 0.8
VGG Flower 87.0± 0.6 23.8± 0.6 45.5± 0.8 62.9± 0.8 44.4± 0.8 33.4± 0.7 79.6± 0.7 78.3± 0.7

Traffic Sign 47.4± 1.1 15.1± 0.7 30.8± 0.9 31.0± 0.9 38.8± 1.1 31.1± 0.9 28.0± 0.9 30.4± 0.9
MSCOCO 53.5± 1.0 12.9± 0.6 22.5± 0.8 25.1± 0.9 23.7± 0.8 21.3± 0.8 32.5± 1.0 25.7± 0.8

MNIST 78.1± 0.7 89.8± 0.5 68.0± 0.8 73.0± 0.7 64.5± 0.8 88.2± 0.5 62.2± 0.8 72.1± 0.7
CIFAR-10 67.3± 0.8 28.5± 0.6 41.2± 0.7 41.8± 0.8 36.9± 0.7 40.0± 0.7 38.8± 0.7 41.3± 0.8

CIFAR-100 56.6± 0.9 12.3± 0.6 24.3± 0.9 28.8± 0.9 24.2± 0.9 23.4± 0.8 25.2± 0.9 29.1± 1.0

Table 2. Results of all single domain learning models. Mean accuracy and 95% confidence interval are reported. The first eight datasets are
seen during training and the last five datasets are unseen for test only.

Five-Shot Five-Way One-Shot

Test Dataset Simple SUR URT Ours Simple SUR URT OursCNAPS [2] [4] [8] CNAPS [2] [4] [8]

ImageNet 47.2± 1.0 46.7± 1.0 48.6± 1.0 49.4± 1.0 42.6± 0.9 40.7± 1.0 47.4± 1.0 49.6± 1.1
Omniglot 95.1± 0.3 95.8± 0.3 96.0± 0.3 96.0± 0.3 93.1± 0.5 93.0± 0.7 95.6± 0.5 95.8± 0.5
Aircraft 74.6± 0.6 82.0± 0.6 81.2± 0.6 84.8± 0.5 65.8± 0.9 67.1± 1.4 77.9± 0.9 79.6± 0.9
Birds 69.6± 0.7 62.8± 0.9 71.2± 0.7 76.0± 0.6 67.9± 0.9 59.2± 1.0 70.9± 0.9 74.9± 0.9

Textures 57.5± 0.7 60.2± 0.7 65.2± 0.7 69.1± 0.6 42.2± 0.8 42.5± 0.8 49.4± 0.9 53.6± 0.9
Quick Draw 70.9± 0.6 79.0± 0.5 79.2± 0.5 78.2± 0.5 70.5± 0.9 79.8± 0.9 79.6± 0.9 79.0± 0.8

Fungi 50.3± 1.0 66.5± 0.8 66.8± 0.9 70.0± 0.8 58.3± 1.1 64.8± 1.1 71.0± 1.0 75.2± 1.0
VGG Flower 86.5± 0.4 76.9± 0.6 82.4± 0.5 89.3± 0.4 79.9± 0.7 65.0± 1.0 72.7± 0.9 79.9± 0.8
Traffic Sign 55.2± 0.8 44.9± 0.9 45.1± 0.9 57.5± 0.8 55.3± 0.9 44.6± 0.9 52.6± 0.9 57.9± 0.9
MSCOCO 49.2± 0.8 48.1± 0.8 52.3± 0.8 56.1± 0.8 48.8± 0.9 47.8± 1.1 56.9± 1.1 59.1± 1.0

MNIST 88.9± 0.4 90.1± 0.4 86.5± 0.5 89.7± 0.4 80.1± 0.9 77.0± 0.9 75.6± 0.9 78.7± 0.9
CIFAR-10 66.1± 0.7 50.3± 1.0 61.4± 0.7 66.0± 0.7 50.3± 0.9 35.8± 0.8 47.3± 0.9 54.7± 0.9

CIFAR-100 53.8± 0.9 46.4± 0.9 52.5± 0.9 57.0± 0.9 53.8± 0.9 42.9± 1.0 54.9± 1.1 61.8± 0.9

Average Rank 3.1 3.0 2.5 1.3 2.8 3.5 2.4 1.2

Table 3. Results of Five-Way One-Shot and Varying-Way Five-Shot settings. Mean accuracies are reported and the results with confidence
interval are reported.

column present the mean accuracy and 95% confidence in-
terval of a single-domain network trained on one dataset (e.g.
ImageNet) and evaluated on 13 test datasets. The average
accuracy and 95% confidence intervals computed over 600
few-shot tasks. The numbers in bold indicate that a method
has the best accuracy per dataset.

As shown in Table 2, the feature of the ImageNet model
generalizes well and achieves the best results on four out
of eight seen datasets, e.g. ImageNet, Birds, Texture, VGG
Flower and four out of five previously unseen datasets, e.g.
Traffic Sign, MSCOCO, CIFAR-10, CIFAR-100. The mod-
els trained on Omniglot, Aircraft, Quick Draw, and Fungi
perform the best on the corresponding datasets while the
Omniglot model also generalizes well to MNIST which has
the similar style images to Omniglot. We then pick the best
performing model, forming the best single-domain model
(Best SDL) which serves a very competitive baseline for
universal representation learning.

2.2. Effect of adaptors in knowledge distillation

In this section, we evaluate our method with adaptors or
without adaptors for aligning features when we use CKA
for knowledge distillation. From Table 4, We can see that

Test Dataset Ours (CKA w/o Aθ) Ours (CKA)

ImageNet 58.3± 1.0 59.0± 1.0
Omniglot 94.4± 0.4 94.7± 0.4
Aircraft 88.9± 0.5 88.9± 0.4
Birds 78.7± 0.8 80.4± 0.7

Textures 74.8± 0.7 74.5± 0.7
Quick Draw 82.1± 0.6 81.9± 0.6

Fungi 65.4± 0.9 66.4± 0.9
VGG Flower 87.5± 0.6 91.3± 0.5

Traffic Sign 63.3± 1.1 63.2± 1.1
MSCOCO 55.3± 1.0 56.6± 1.0

MNIST 94.9± 0.4 94.7± 0.4
CIFAR-10 73.4± 0.7 73.8± 0.7

CIFAR-100 61.8± 1.0 62.1± 1.0

Table 4. Results of our method using CKA, CKA without adaptors
(i.e. Aθ). Mean accuracy and 95% confidence interval are reported.
Here, Ours (CKA w/o Aθ) indicates that adaptors are not applied for
aligning features. All results are obtained with feature adaptation
during meta-test stage.

using adaptors can improve the performance, such as Birds
(+1.7) and VGG Flower (+3.6), MSCOCO (+1.3). This
indicates that the adaptors Aθ help align features between
multi-domain and single-domain learning networks which
are learned from very different domains.



Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower

Recall@k 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Sum 22.1 30.3 39.6 50.0 84.7 91.8 95.8 97.8 69.7 80.7 88.6 94.5 45.9 59.7 72.0 84.1 66.3 78.2 87.3 94.0 77.4 84.3 89.1 92.1 31.9 42.9 54.0 65.4 85.1 92.1 96.7 98.6
Concate 20.2 28.0 36.9 47.8 84.4 91.5 95.8 97.8 44.3 58.1 71.1 82.9 35.5 48.8 62.8 76.0 68.8 78.2 87.3 93.9 73.0 80.8 86.2 90.6 30.7 40.4 51.8 63.0 83.4 91.3 95.2 98.2

MDL 29.8 39.6 49.9 60.9 89.8 94.3 96.8 98.2 80.3 87.1 92.5 95.9 63.2 75.9 84.7 91.6 67.0 77.1 85.4 92.9 79.5 85.4 89.7 92.8 40.2 51.7 63.0 72.4 86.9 93.3 96.6 98.4
Simple CNAPS [2] 34.0 43.8 54.4 65.1 84.9 91.6 95.5 97.5 70.5 82.5 91.3 96.1 55.9 70.5 82.0 90.2 64.8 76.9 87.6 94.4 75.3 83.0 88.0 91.7 29.1 39.0 49.6 61.5 88.1 94.1 97.6 99.2

Ours 36.1 46.2 56.3 66.6 89.7 94.3 97.2 98.3 83.3 90.4 93.7 96.3 66.7 78.9 87.9 94.1 70.2 80.8 87.5 93.8 79.9 86.5 90.5 93.2 44.5 56.2 67.3 76.4 90.0 94.6 97.5 98.9

Table 5. Global retrieval performance on Meta-Dataset (seen datasets). In addition to few-shot learning experiments, we evaluate our method
in a non-episodic retrieval task to further compare the generalization ability of our universal representations.

Test Dataset Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Recall@k 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Sum 94.6 97.2 98.5 99.3 62.6 71.2 78.9 85.0 98.3 99.2 99.6 99.8 54.0 68.9 81.9 90.6 27.8 37.4 48.4 60.4
Concate 95.1 97.3 98.6 99.2 60.7 69.8 77.4 83.6 98.7 99.3 99.6 99.8 49.7 65.3 79.4 88.9 25.4 34.6 45.3 57.2

MDL 89.5 94.1 96.6 98.3 63.6 72.6 79.9 86.0 97.6 98.8 99.2 99.6 58.9 72.9 84.1 92.2 31.6 42.0 53.4 64.8
Simple CNAPS [2] 79.9 86.9 92.6 96.2 65.2 73.8 81.1 86.6 97.5 98.8 99.3 99.7 66.2 79.3 88.5 94.7 33.2 44.2 57.3 68.7

Ours 87.9 93.0 96.1 98.2 67.4 76.3 83.0 88.5 97.0 98.4 99.1 99.5 62.1 76.5 86.0 93.3 35.1 46.1 57.8 69.0

Table 6. Global retrieval performance on Meta-Dataset (unseen datasets). In addition to few-shot learning experiments, we evaluate our
method in a non-episodic retrieval task to further compare the generalization ability of our universal representations.

2.3. Complete results of varying-way five-shot and
five-way one-shot

We further analyze our method for 5-shot setting with
varying number of categories. To this end, we follow the
setting in [3], compare our method to the best three state-of-
the-art methods including Simple CNAPS, SUR and URT.
In this setting, we sample a varying number of ways in Meta-
Dataset the same as the standard setting but a fixed number
of shots to form balanced support and query sets. The mean
accuracy and 95% confidence interval of our method and
compared approaches are depicted in Table 3. As shown
in Table 3, overall performance for all methods decreases
in most datasets compared to results in the conventional
setting shown in Table 1 in the paper, indicating that this
is a more challenging setting. It is due to that five-shot
setting samples much less support images than the standard
setting. While both Simple CNAPS and SUR obtain 3.1
and 3.0 average rank, respectively. SUR performs the best
on MNIST, Simple CNAPS outperforms others on CIFAR-
10 and URT is top-1 on Quick Draw. Ours still achieves
significant better performance than other methods on the rest
ten datasets.

Results in five-way one-shot setting. Next we test an
extremely challenging five-way one-shot setting on Meta-
Dataset. For each task, only one image per class is seen as
support set. This setting is often used in evaluating different
methods in a single domain [7, 10, 14], while we adopt it for
multiple domains. As shown in Table 3, our method achieves
consistent gain as observed in previous two settings, which
validates the importance of good universal representations
in case of limited labeled samples in meta-test. Interestingly,
Simple CNAPS achieves better rank than SUR in this setting,
which is opposite in previous settings.

Results evaluated with updated evaluation protocol.
As the code from Meta-dataset has been updated, we evalu-
ate all methods with the updated evaluation protocol from

the Meta-dataset 1 and report the results 2 in Table 7. As
shown in Table 7, the update does not affect much on the
results and our method rank 1.2 in average and the state-of-
the-art methods SUR and URT rank 5.4 and 4.2, respectively.
More specifically, we obtain significantly better results than
the second best approach on Aircraft (+4.1), Birds (+1.3),
Texture (+4.1), and Fungi (+2.9) for seen domains and Traf-
fic Sign (+4.1) and MSCOCO (+4.3). The results show that
jointly learning a single set of representations provides bet-
ter generalization ability than fusing the ones from multiple
single-domain feature extractors as done in SUR and URT.
Notably, our method requires less parameters and less com-
putations to run during inference than SUR and URT, as it
runs only one universal network to extract features, while
both SUR and URT need to pass the query set to multiple
single-domain network.

Comparison to Cross-Transformer [3] and Transductive
CNAPS [6]. Here we compare our method to CTX [3] and
TCNAPS [1]3 in Table 8. Note that TCNAPS and CTX are
not directly comparable to our method. TCNAPS extends the
Simple CNAPS [2] to a more favorable transductive infer-
ence setting and exploits the query set at test time which is in
contrast to the inductive learning in our submission. CTX [3]
focuses on learning from a single domain (ImageNet), while
our method is proposed to learn a single set of universal
representation from multiple domains. In addition, CTX is
built on a heavier network (ResNet-34) and larger resolution
images (224×224) than the one (ResNet-18, 84×84 images)

1As mentioned in https://github.com/google-research/
meta-dataset/issues/54, we also set the shuffle buffer size as
1000 to evaluate all methods and report the results in Table 7. This change
does not affect much on the results as the datasets we used were shuffled
using the latest data convert code from Meta-Dataset.

2Results of Proto-MAML [13], BOHB-E [12], and CNAPS [11] are
obtained from Meta-Dataset. The results of Simple CNAPS [2] are
reproduced by the authors and reported at https://github.com/
peymanbateni/simple-cnaps. We reproduce the results of SUR [4]
and URT [8] with the updated evaluation protocol for fair comparison.

3Results of CTX and TCNAPS are from https://github.com/
google-research/meta-dataset



Test Dataset Proto-MAML [13] BOHB-E [12] CNAPS [11] Simple CNAPS [2] SUR [4] URT [8] Best SDL MDL Ours

ImageNet 46.5± 1.1 51.9± 1.1 50.8± 1.1 56.5± 1.1 54.5± 1.1 55.0± 1.1 54.3± 1.1 52.9± 1.2 57.5± 1.1
Omniglot 82.7± 1.0 67.6± 1.2 91.7± 0.5 91.9± 0.6 93.0± 0.5 93.3± 0.5 93.8± 0.5 93.7± 0.5 94.5± 0.4
Aircraft 75.2± 0.8 54.1± 0.9 83.7± 0.6 83.8± 0.6 84.3± 0.5 84.5± 0.6 84.5± 0.5 84.9± 0.5 88.6± 0.5
Birds 69.9± 1.0 70.7± 0.9 73.6± 0.9 76.1± 0.9 70.4± 1.1 75.8± 0.8 70.6± 0.9 79.2± 0.8 80.5± 0.7

Textures 68.2± 0.8 68.3± 0.8 59.5± 0.7 70.0± 0.8 70.5± 0.7 70.6± 0.7 72.1± 0.7 70.9± 0.8 76.2± 0.7
Quick Draw 66.8± 0.9 50.3± 1.0 74.7± 0.8 78.3± 0.7 81.6± 0.6 82.1± 0.6 82.6± 0.6 81.7± 0.6 81.9± 0.6

Fungi 42.0± 1.2 41.4± 1.1 50.2± 1.1 49.1± 1.2 65.0± 1.0 63.7± 1.0 65.9± 1.0 63.2± 1.1 68.8± 0.9
VGG Flower 88.7± 0.7 87.3± 0.6 88.9± 0.5 91.3± 0.6 82.2± 0.8 88.3± 0.6 86.7± 0.6 88.7± 0.6 92.1± 0.5
Traffic Sign 52.4± 1.1 51.8± 1.0 56.5± 1.1 59.2± 1.0 49.8± 1.1 50.1± 1.1 47.1± 1.1 49.2± 1.0 63.3± 1.2
MSCOCO 41.7± 1.1 48.0± 1.0 39.4± 1.0 42.4± 1.1 49.4± 1.1 48.9± 1.1 49.7± 1.0 47.3± 1.1 54.0± 1.0

MNIST - - - 94.3± 0.4 94.9± 0.4 90.5± 0.4 91.0± 0.5 94.2± 0.4 94.5± 0.5
CIFAR-10 - - - 72.0± 0.8 64.2± 0.9 65.1± 0.8 65.4± 0.8 63.2± 0.8 71.9± 0.7
CIFAR-100 - - - 60.9± 1.1 57.1± 1.1 57.2± 1.0 56.2± 1.0 54.7± 1.1 62.6± 1.0

Average Rank 7.7 8.0 6.8 4.8 5.4 4.2 4.8 4.8 1.2

Table 7. Comparison to baselines and state-of-the-art methods on Meta-Dataset. Mean accuracy, 95% confidence interval are reported. The
first eight datasets are seen during training and the last five datasets are unseen and used for test only. Average rank is computed according to
first 10 datasets as some methods do not report results on last three datasets.

Test Dataset CTX [3] TCNAPS [1] Ours

ImageNet 62.8± 1.0 57.9± 1.1 57.5± 1.1
Omniglot 82.2± 1.0 94.3± 0.4 94.5± 0.4
Aircraft 79.5± 0.9 84.7± 0.5 88.6± 0.5
Birds 80.6± 0.9 78.8± 0.7 80.5± 0.7

Textures 75.6± 0.6 66.2± 0.8 76.2± 0.7
Quick Draw 72.7± 0.8 77.9± 0.6 81.9± 0.6

Fungi 51.6± 1.1 48.9± 1.2 68.8± 0.9
VGG Flower 95.3± 0.4 92.3± 0.4 92.1± 0.5
Traffic Sign 82.7± 0.8 59.7± 1.1 63.3± 1.2
MSCOCO 59.9± 1.0 42.5± 1.1 54.0± 1.0

MNIST - - 94.5± 0.5
CIFAR-10 - - 71.9± 0.7

CIFAR-100 - - 62.6± 1.0

Table 8. Comparison to CrossTransformer (CTX) and Transduc-
tiveCNAPS (TCNAPS) on Meta-Dataset. Mean accuracy, 95%
confidence interval are reported. The first eight datasets are seen
during training and the last five datasets are unseen and used for
test only. Note that TCNAPS and CTX are not directly comparable
to our method.

in ours. Nevertheless, as shown in Table 8, our method still
outperforms TCNAPS and CTX on most of the domains (8
out of 10 and 5 out of 10 respectively). Both the transductive
learning in TCNAPS and the cross-attention mechanism in
CTX are potentially orthogonal to our universal representa-
tion learning and thus can be incorporated to ours, while we
leave this as future work. We will include the results and
detailed discussion in the final version.

2.4. Qualitatively results

We qualitatively analyze our method and compare it to
the vanilla multi-domain leanring (MDL) baseline, Simple
CNAPS [2], SUR [4] and URT [8] in Figs. 1 to 13 by illus-
trating the nearest neighbors in all test datasets given a query
image. It is clear that our method produces more correct
neighbors than other methods. While other methods retrieves
images with more similar colors, shapes and backgrounds,

e.g. in Figs. 9 and 10, our method is able to retrieve seman-
tically similar images. It again suggests that our method is
able to learn more useful and general representations.

2.5. Complete global retrieval results

Here we go beyond the few-shot classification experi-
ments and evaluate the generalization ability of our repre-
sentations that are learned in the multi-domain network in a
retrieval task, inspired from metric learning literature [9, 15].
To this end, for each test image, we find the nearest im-
ages in entire test set in the feature space and test whether
they correspond to the same category. For evaluation metric,
we use Recall@k which considers the predictions with one
of the k closest neighbors with the same label as positive.
In Tables 5 and 6, we compare our method with Simple
CNAPS in Recall@1, Recall@2, Recall@4 and Recall@8.
URT and SUR require adaption using support set and no
such adaptation in retrieval task is possible, we replace them
with two baselines that concatenate or sum features from
multiple domain-specific networks. Our method achieves
the best performance in ten out of thirteen domains with
significant gains in Aircraft, Birds, Textures and Fungi. This
strongly suggests that our multi-domain representations are
the key to the success of our method in the previous few-shot
classification tasks.



MDL
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Figure 1. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in ImageNet. Green and red colors indicate correct
and false predictions respectively.
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Figure 2. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in Omniglot. Green and red colors indicate correct
and false predictions respectively.
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Figure 3. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in Aircraft. Green and red colors indicate correct and
false predictions respectively.
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Figure 4. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in Birds. Green and red colors indicate correct and
false predictions respectively.
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Figure 5. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in Textures. Green and red colors indicate correct and
false predictions respectively.
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Figure 6. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in Quick Draw. Green and red colors indicate correct
and false predictions respectively.
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Figure 7. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in Fungi. Green and red colors indicate correct and
false predictions respectively.



MDL

URT

Ours

Simple
CNAPS

SUR

Query Nearest Neighbors

Figure 8. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in VGG Flower. Green and red colors indicate correct
and false predictions respectively.
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Figure 9. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in Traffic Sign. Green and red colors indicate correct
and false predictions respectively.
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Figure 10. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in MSCOCO. Green and red colors indicate correct
and false predictions respectively.
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Figure 11. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in MNIST. Green and red colors indicate correct and
false predictions respectively.
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Figure 12. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in CIFAR-10. Green and red colors indicate correct
and false predictions respectively.
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Figure 13. Qualitative comparison to MDL, Simple CNAPS [2], SUR [4], and URT [8] in CIFAR-100. Green and red colors indicate correct
and false predictions respectively.


