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In this supplementary material, we first give the model
architecture details and implementation details in Section 1.
Then we provide the dataset collection details in Section 2.
In Section 3, we show the dataset statistics.

1. Model architecture details and implementa-
tion details

We provide the model architecture details in Section 1.1
and implementation details in Section 1.2.

1.1. Feature learning

In Section 3.2 of the main paper, we introduce the ob-
ject feature, contextual frame feature, and attended hu-
man/object features. In this section, we provide more de-
tails about the different types of features.

Verb-object query feature learning. To extract the fea-
ture of the verb-object query described in the main paper
(Figure 2), we first map the input verb and object queries to
embedded features êv and êo, respectively, using the pub-
licly available Google News Word2Vec model [6]. Next,
we pass the embedded features through linear mappings Wv

and Wo to obtain 128-dimensional vectors ev = Wv ê
v and

eo = Woê
o.

Human feature learning. To get the human region fea-
tures fh

t described in the main paper (Figure 2), we first
extract candidate human location proposals in each video
frame using the publicly available DensePose model [1],
which returns a binary segmentation mask of humans in
the scene and human bounding-box proposals. As shown
in Figure 1 of this supplement, at time t, each human re-
gion proposal i has a bounding box bht,i. We pass the seg-
mentation mask to a convolutional network to generate hu-
man feature maps and then use ROI pooling over the human
bounding box bht,i to generate human region features fh

t,i.
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Figure 1: Illustration of extracting human/object features. We
learn convolutional filters to encode the Densepose segmentation
mask to intermediate features. We obtain the feature of each ob-
ject region fo

t,i by combining its ROI pooled features from the FPN
feature maps f̂o

t,i and the human conv feature maps f̂h
t,i. The fea-

ture of each human region fh
t,i is the corresponding ROI pooled

feature from the human conv feature maps. (Video credit: TheOn-
DeckCircle [10])

The convolutional network consists of a 7 × 7 spatial con-
volutional layer, followed by ReLU and max-pooling non-
linearities, followed by a 3× 3 spatial convolutional layer.

Contextual frame feature learning. We describe the
contextual frame feature learning in the main paper Section
3.2. Here we illustrate the learning process of the contextual
frame feature in Figure 2 of this supplement.

Human-object interactions are temporal events and oc-
cur over a period of time. To utilize the temporal informa-
tion from the whole video, we use a soft attention module
[11] to learn a contextual feature representation xt for each
frame. Given a video frame It, we send the frame to Faster
R-CNN [9] and extract the final layer of the FasterR-CNN
feature pyramid network to obtain an intermediate feature
map. We add an average pooling layer after the intermedi-
ate feature map and generate a feature vector as the frame
feature descriptor x̂t. Then we send x̂t to an embedding
layer to generate a “query” feature vector xque

t . We use the
same method to extract the features of all frames in the input



Figure 2: Illustration of learning contextual frame feature.
Given a frame feature x̂t obtained by passing this frame through
a neural network, we send x̂t to an embedding layer to generate a
“query” feature vector xque

t . For the feature of each frame in the
same video, we use two different embedding layers to get “key”
xkey
t′ and “value” xval

t′ vectors. We compute the inner product of
the “query” and “key” to get a similarity score st,t′ of the cur-
rent frame and each frame in the same video. A softmax layer
is then applied to the similarity scores to normalize the similarity
of each frame to the current frame. The contextual frame feature
is obtained by the weighted average over frame “value” features.
(Video credit: The Best Gallery Craft [2])

video and represent them as {x̂1, · · · , x̂T }. For the feature
of each frame in the video, we use two different embed-
ding layers to get “key” xkey

t′ and “value” xval
t′ vectors. We

compute the inner product of the “query” and “key” to get
a similarity score st,t′ = (xque

t )Txkey
t′ of the current frame

and each frame in the same video. A softmax layer is then
applied to the similarity scores to normalize the similarity of
each frame to the current frame. The contextual frame fea-
ture is obtained by the weighted average over frame “value”
features xt =

∑T
t′=1 st,t′x

val
t′ .

Region attended human/object feature learning. To
obtain the attended human and object features, Φh

t and Φo
t ,

used in the main paper Figure 2, we first compute an atten-
tion score for each human/object region and then aggregate
the human/object features based on their attention scores.
In Figure 3 of this supplement, we show the details of the
region attention module used in the main paper (Figure 2).
The region attention module computes attention scores for
the human/object region proposals to measure their rela-
tive relevance to the given verb-object query. For each
human region in frame It, we first concatenate its feature
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Figure 3: Illustration of the region attention module. The
region attention module computes attention scores for the hu-
man/object region proposals to measure their relative relevance to
the given verb-object query. For each human region in frame It,
we first concatenate its feature representation fh

t,i with the contex-
tual frame feature xt and the verb-object query feature and then
pass them through an MLP to obtain a score. We apply the soft-
max function over the scores of all human regions in this frame
and get the final human attention scores σh

t . Similarly, each object
region has an object attention score σo

t after applying the softmax
function over all object regions. The attention scores are used to
aggregate human/object features as weights in a weighted average
given by Eqn. 2 in the main paper.

representation fh
t,i with the contextual frame feature xt and

the verb-object query feature and then pass them through
a small network (consisting of two fully-connected layers
with LeakyReLU as the activation function in the middle)
to obtain a score. We apply the softmax function over the
scores of all human regions in this frame and get the final
human attention scores σh

t . Similarly, each object region
has an object attention score σo

t after applying the softmax
function over all object regions. The attention scores are
used to aggregate human/object features using Equation 2
in the main paper.

1.2. Implementation details

Our model is initialized with a ResNext101 Faster R-
CNN model, with the RPN pretrained on the COCO dataset
from the Detectron library [3]. During training, we select 12
frames from each video and 512 object region proposals (af-
ter non-maximum suppression) as object candidate bound-
ing boxes and 25 human bounding boxes for each frame.
For the weakly supervised language-embedding alignment
LL loss (Equation 3 of the main paper), we compute the loss
over 15 sampled negatives from Ev for the human term and
15 sampled negatives from Eo for the object term, during
training.

For the self-supervised temporal contrastive loss LT in
each frame It, we compute the loss over 15 sampled neg-
atives from the negative feature set Fo

t . In practice, we



find that the objects or humans of interest are not always
present across all the frames in a video. Some video frames
will only show part of the object/human or background. To
make the proposed self-supervised temporal contrastive loss
more robust to frames that do not contain the mentioned
human-object interaction, we only use the temporal con-
trastive losses on 50% frames that have the lowest temporal
contrastive losses in each video. The selected frames are
more likely to contain the target human and objects.

We used the Adam optimizer [4] with a learning rate of
1e-4 and a learning rate of 1e-6 for the Faster R-CNN. We
use a weight coefficient of α = 0.1 for the temporal con-
trastive loss LT in Equation 5 of the main paper.

2. Dataset collection details
We extract the videos from the Moments in Time dataset

[7]. The Moments in Time dataset has 800k videos with
associated metadata, such as title sentences and tags. More-
over, each video has a manually provided action label, such
as “drinking” and “pushing”. We leverage the action labels
to help find labels for the human-object interactions from
the metadata associated with the videos. We achieve this
goal by initially filtering videos to contain the action label
in the title sentence or metadata. However, some videos do
not have verbs corresponding to human-object interactions,
such as “storming” and “erupting”, so we manually discard
videos that do not correspond to human actions. We then
used the Stanford NLP parser [5] to find videos contain-
ing noun phrases after the action label in the title or meta-
data, and use the resulting noun phrase as the object label.
Finally, we remove videos with non-English metadata and
manually filter out bad parsing results. After filtering, we
obtained approximately 14,000 videos. We manually fil-
tered out bad examples, such as videos having low frame
resolution, wrong language labels, or blurry humans and
objects. We finally obtained 6,594 videos in total.

We semi-automatically analyzed the natural language
descriptions that accompanied the videos. We do not define
a fixed list of HOIs a priori but instead use action-object
pairs that appear with a certain frequency in the language
captions. By considering more videos with accompanying
descriptions, the vocabulary naturally increases.

We collect human and object bounding box annotations
using Amazon Mechanical Turk for the test and unseen
datasets. We ask each worker to annotate the specific hu-
man and object bounding boxes participating in the given
human-object interaction label. For each video frame, we
collect bounding box annotations from 3 different work-
ers. We average the annotations from each worker to ob-
tain the object bounding box annotations. We assume that
there can be multiple people interacting with the given ob-
ject in a video frame. To obtain the accurate number of
humans in the input video frame, we want to cluster the hu-

man bounding boxes collected from different workers. The
close human bounding boxes are more likely to describe the
same human. By counting the number of clusters, we can
estimate the number of humans in the input video frame.
To do this, we ran an affinity propagation clustering al-
gorithm [8] on all labelled human bounding boxes across
multiple workers. We select the clusters which have more
than two annotations and average all the annotations within
each cluster as the bounding box annotation of that person.
We further manually examine the annotated bounding boxes
and discard low-quality annotations.

3. Dataset statistics
Our focus is on video-based, human-centric HOI detec-

tion without exhaustively annotating the spatial location of
objects in a video at training which is time consuming given
the large number of frames in a video. Our dataset con-
sists of 244 different object classes and 99 different action
classes. There are 756 verb-object classes in total with di-
verse human-object interactions.

All the videos are extracted from the Moments in Time
dataset [7], which contains short trimmed videos. We semi-
automatically analyzed the natural language descriptions
that accompanied the videos. By considering more videos
with accompanying descriptions, the vocabulary can natu-
rally increase.

We present the dataset statistics in Figure 4, Figure 5, and
Figure 6 of this supplement. Figure 4 shows the distribution
of objects. We show the top 50 most frequent object classes.
Figure 5 shows the distribution of the top 50 most frequent
action classes. Figure 6 shows the distribution of the top 50
most frequent verb-object classes.



Figure 4: Distribution of objects in our dataset. Our dataset consists of 244 different object classes, where for brevity we
only show the top 50 in the diagram above.



Figure 5: Distribution of actions in our dataset. Our dataset consists of 99 different action classes, where for brevity we
only show the top 50 in the diagram above.



Figure 6: Distribution of verb-object classes in our dataset. Our dataset consists of 756 different verb-object classes,
where for brevity we only show the top 50 in the diagram above.
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