Supplementary Material: Boosting the Generalization Capability in
Cross-Domain Few-Shot Learning via Noise-enhanced Supervised Autoencoder

1. Discriminability Analysis of Deep Features

Below we give the details of the definition of the Inter-
class correlation (ICC) [1, 2]. Let f be an feature extractor
and D =D UDyU---UDg where D = {(x;,y;) : y; =
j} be a dataset with K classes. Let f(z;) := % be
the normalized feature extracted by the feature extractor f.
Then the center of the images features in jth class is defined
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Then the classical intra-class and inter-class variation on the
full dataset D are defined respectively as
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The inter-class variation measures the average pairwise dis-
tances of class centers and the intra-class variation measures
the within class variation of the image features. Following
[2], the intra-class correlation (ICC) is defined as

ICC(f|D) = Dinter(f|D)/Dintra(f|D)- 3)
Therefore, the ICC of a feature extractor f on dataset D
is larger when the inter-class is larger and the intra-class is
smaller. The ICC can therefore measures the discriminabil-
ity of a feature extractor since a good feature embedding
has smaller within-class variation and larger margin across
classes.

In our experiment to study the discriminability of the fea-
ture extractors, we randomly sample 5 classes and compute
the ICC based on the images from these 5 classes. We repeat
these procedure for 600 times and use the average ICC as a
measure for the discriminability of a feature extractor. The
average ICC is computed using the same feature extractor
on both the source and the target domains.

2. Model Architecture

In our proposed noise-enhanced supervised autoencoder,
we use Conv4 and ResNetlO as the encoder structure
and design the corresponding decoders. The decoder can
be seen as a mirror mapping of the encoder which con-
sist of deconvolutional blocks, with each block contain-
ing 2D transposed convolution operator and ReLU activa-
tion, which expand the dimension of the feature map. Be-
fore deconvolutional layers, we also add several fully con-
nected layers that transform feature representations from
encoder. Detailed architecture and layer specifications of
the decoders are shown in Table 1.

Table 1. The architecture and layer specifications of the decoder
modules of the Conv4 and ResNet10 based NSAE. Linear repre-
sents fully connected layer followed by ReL.U activation. Deconv-
ReLU represents a ConvTranspose2d-BatchNormalization-ReLU
layer. Conv-Sigmoid represents a Conv2d-BatchNormalization-
Sigmoid layer.

Module

Specifications
Linear, 1600x512
Linear, 512x 1600
Reshape to 64x5x5

22 Deconv-ReLU, 64 filters, stride 2, padding 0
2x2 Deconv-ReLU, 64 filters, stride 2, padding 0
2x2 Deconv-ReLU, 64 filters, stride 2, padding 0
2x2 Deconv-ReLU, 3 filters, stride 2, padding 0
33 Conv-Sigmoid, 3 filters, stride 1, padding 1

Linear, 512x512
Linear, 512x6272
Reshape to 32x14x 14
2x 2 Deconv-ReLU, 32 filters, stride 2, padding O
2x 2 Deconv-ReLU, 32 filters, stride 2, padding O
2x 2 Deconv-ReLU, 64 filters, stride 2, padding O
2x 2 Deconv-ReLU, 64 filters, stride 2, padding O
33 Conv-Sigmoid, 3 filters, stride 1, padding 1

Conv4

ResNet10

3. Ablation Study Results

Table 2 gives the detailed experiment result for the 5-
way H-shot ablation study on 8 datasets with various model
architectures and loss functions. We use four kinds of
combinations of the classification loss functions for pre-
training and fine-tuning, i.e. CE+CE, BSR+CE, CE+D,
and BSR+D. Meanwhile, we respectively test with Conv4



Table 2. Ablation study. The ablation study on the 5-way 5-shot support set on 8 datasets with various model architectures and loss

functions.

Encoder ‘ Method ISIC EuroSAT CropDisease ChestX Car CUB Plantae Places
CE+CE  46.0440.62  68.884+0.68  83.4740.67 24.814£043 38.36£0.58  52.9440.70 45554071  58.7440.74
NSAE(-)  46.64£0.62  70.19+£0.64  84.89+0.60  24.86+0.41  39.88+0.64 55084070  46.98+0.69  59.54+0.69
NSAE 46.65+0.63  70.34+0.65  85.2240.61 25024042  39.90+0.62  5535+0.67 47.1840.75  59.5940.69
SAE 4636+0.61  68.88+0.65  83.5740.62  24.8840.41  37.944059 52744065 44794067 58344071
SAE(¥)  44.8840.60 70.104£0.68  83.38+0.64 25004041  37.2940.60  53.64+0.70  44.60+0.65  59.12+0.72
BSR+CE  48.7840.64  69.3440.68  85.884+0.61 25414042 42544070  60.16+0.73  50.85+0.78  62.3840.77
NSAE(-) 49324059  71.84£0.66  86.86+0.59 25594042  42.54+0.64  60.00+0.71  50.00+0.73  63.36+0.72
NSAE 49.34+0.59  72.00+0.65  86.87+0.59 25624042  42.5610.65  60.180.72  49.4840.73  63.4040.72
SAE 48.68+0.63  72.174+0.69  86.23+0.60 25314041  42.3840.68  60.1040.76  48.2940.74  62.1240.73

Convé4 SAE(*) 47254058  70.5240.67  85.1440.62 25454040  40.8140.63  59.5440.74  47.7040.70  62.4640.75
CE+D 50.54£0.66  76.16£0.64  89.65£0.55 24074041 44264070  58.61+£0.82 52474074  61.8140.74
NSAE(-)  50.94+0.63  77.704£0.70  90.06+0.52  24.46+0.40  43.96+0.68  60.00+0.82  53.26+0.80  62.26+0.73
NSAE 50.95+0.63  77.774+0.64  90.114+0.52 24294040 44.2840.72  59.9040.78  53.36+0.78  62.4240.72
SAE 50.6240.65  74.9240.64 88114059  23.5240.41 42454070  57.044£081  51.5140.80  61.0840.74
SAE(Y)  49.9440.66 7724070 88314056  24.014£040  42.1240.68  57.1540.82  51.7740.82  61.4040.78
BSR+D  50.06+0.65 75.7440.67 87.7140.56  23.66+0.40  41.114£0.77  58.8140.81  51.35+0.81  60.5140.80
NSAE(-)  49.9540.67 76.96+0.70  87.70+0.57  23.60+0.41 41054072  5832+0.81  51.74+0.84  60.34%0.81
NSAE 49.984+0.67  77.00+0.69  87.71+0.58  23.6140.41  41.804+0.72  59.4240.82  51.80+0.84  60.9240.85
SAE 49.7740.68  75.584+0.69  87.6740.57  23.354041 41754075 58344081 50924081  60.2540.81
SAE(*)  49.46£0.68  76.1740.70  86.5040.60 23234039  40.16£0.70  58.26+0.79  50.70+0.83  60.86+0.84
CE+CE 51284062 825140.58 92454045 26504043 52084072  64.1440.77  59.2740.70  70.06+0.74
NSAE(-)  53.5240.62  83.83+£0.56  93.14+047  26.69+0.44 53494072  67.60+0.73  59.70+0.74  70.74%0.71
NSAE 54.05+0.63  83.96+0.57 93144047  27.10£0.44  5491+0.74  68.514+0.76  59.80+0.74  71.8440.72
SAE 522840.63  83.78+0.55  93.014042 26054045  53.5440.71 64274075  59.8740.73  70.8240.72
SAE(*)  52.1140.65  83.5040.55  93.054£047 26374045 5426070  66.6240.75  59.6240.75  71.4040.67
BSR+CE  54.4240.66  80.8940.61  92.174045  26.84+044 57494072  69.3840.76  61.0740.76  71.0940.68
NSAE(-)  55.2740.62 84194054 92924047 27234045 58354076  71.30+0.75 61924076  71.76+0.74
NSAE 55.88+0.64  84.33+0.55 93314042  27.3040.42 58304075 71924077  62.1840.77  73.1740.72
SAE 54.4840.65  84.10+0.54 92924047  27.204045 58304076  71.3040.75  61.9240.76  71.7640.74

ResNetl0 | SAE(*)  54734+0.68  83.90+0.55  93.0240.46 26744043  57.60+0.71  71.50+0.75 62204078  72.99+0.67
CE+D 51.6240.66 83724059 93224041 26234044 55124076  66.56+0.78  59.0940.76  72.8140.73
NSAE(-)  5431£0.68 83.7740.62  93.54+040 26984044 55674078 67174076  59.46+0.75  72.90+0.72
NSAE 54.41+0.63  83.78+0.56  93.65+0.40  27.25+0.44 55784073  67.64+0.76  59.74+0.75  73.25+0.73
SAE 52.6440.67  83.1340.63 93444041 26344044 55444074 65084076  59.70+0.78  73.1340.71
SAE(*)  51.3740.66  83.0440.63 92534042 26444042 55004073  65.134£0.81  59.464+0.79  73.2040.67
BSR+D  52.8540.65  80.13+0.65  91.204048  26.80+0.45 54994074  68.15+0.84 58264077  71.9740.72
NSAE(-) 53744067  82.1940.64 92224047 26794045 55904077  6832+0.81 60254077  73.2840.72
NSAE 54.4240.64  82.79+0.62 92454045 26694045 55924072 6846082  60.40+-0.78  73.33+0.71
SAE 51.8440.65  80.024£0.69 91954045 26524042 55904077  66.64+£0.79  59.204£0.80  72.4840.76
SAE(*)  53.08+0.67 81.77+0.64  91.63+0.46 26584045 54874078  67.97+0.83  58.61+0.79  73.2040.67

and ResNet10 as backbone of feature encoder. In the ta- compare the performance of our proposed method with that

ble, CE+CE, BSR+CE, CE+D, and BSR+D denote using
single feature extractor with different loss functions com-
binations. SAE denotes that we use auto-encoder but do
not further feed in the reconstructed images for classifica-
tion during the pre-training. SAE(*) denotes that we double
the weight on the classification loss of original images as
if the auto-encoder works perfectly that the reconstructed
images are identical to original images. NSAE(-) denotes
using our proposed pre-training strategy but using one-step
fine-tuning.

4. Comparison with Handcrafted Noise

The reconstructed images during the pre-training stage
can be viewed as noisy inputs to improve the model general-
ization capability. Can the model generalization capability
be improved if we use images with handcrafted noise in-
stead of reconstructed images? To answer this question, we

when images with handcrafted noise are used as data aug-
mentation during pre-training. In our experiment, we con-
sider the following four kinds of handcrafted noise: Gaus-
sian, salt-pepper, Poisson, and speckle. We use the skimage
package [3] in python to add handcrafted noise to source
images. The parameter values for the noise generation are
given in Table 3. We use BSR+CE loss combination and

Table 3. Handcrafted Noise Configuration. The parameters for
adding noise to the images.

Noise type  Parameter values

Gaussian mode="‘gaussian’, mean=0, var=0.1
salt-pepper mode="‘s&p’, salt_vs_pepper=0.5
Poisson mode="‘poisson’

speckle mode="speckle’, mean=0, var=0.05

consider the following two settings during pre-training: (a)
only use the encoder and feed in both source and hand-



crafted noisy images for classification; (b) add a decoder to
(a) with reconstruction loss, though the reconstructed im-
ages are not used for classification. The rest of the hyper-
parameter values are the same as that given in Section 4.1
in the main paper. The results averaged over 8 datasets are
shown in Fig. 1. It can be seen from the figures that
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Figure 1. Ablation study with handcrafted noisy images. The two
horizontal lines are baselines without noisy images.

1. regardless of the noise type, using auto-encoder
scheme with reconstruction loss helps improve the
generalization capability owing to regularization effect
from decoder, which shows the advantage of our model
on top of simple data augmentation;

2. adding handcrafted noise may not improve the accu-
racy, but our design consistently improves the accuracy
and surpasses all results with handcrafted noise.
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