
Supplementary for “Exploring Geometry-aware Contrast and Clustering
Harmonization for Self-supervised 3D Object Detection”

1. Dataset and Evaluation

To evaluate the performance of GCC-3D, we do exper-
iments on nuScenes, Waymo and KITTI datasets. Unless
otherwise noted, settings are the same for all experiments.

1.1. Detection on nuScenes

We first conduct experiments on nuScenes [2] dataset,
which has 28k, 6k, 6k, annotated frames for training, vali-
dation, and testing, respectively. nuScenes uses a 32 lanes
Lidar, which produces approximately 30k points per frame.
To enrich input information and enable a more reason-
able velocity estimation, a common practice[2] in nuScenes
is transforming and accumulating LiDAR sweeps of non-
annotated frames into its following annotated frame as in-
put. The dataset has a severe imbalance among 10 classes,
so that class-balanced grouping and sampling is adopted
during supervised fine-tuning, following [18]. For experi-
ments on nuScenes, we use a detection range of [-51.2m,
51.2m] for the X and Y axis, and [-5m, 3m] for Z axis.
CenterPoint-voxel uses a (0.1m, 0.1m, 0.2m) voxel size
and CenterPoint-pillar uses a (0.2m, 0.2m) grid. Following
the training setting in [15], we optimize the model using
AdamW[7] optimizer with one-cycle learning rate policy,
with max learning rate 1e − 3 for VoxelNet and 0.002 for
Pointpillar, weight decay 0.01, and momentum [0.85, 0.95].

Evaluation Metric For 3D detection evaluation, we
adopt the official metrics of nuScenes dataset, that is, mean
Average Precision (mAP) and nuScenes detection score [2]
(NDS). The mAP uses a bird’s-eye-view center distance <
0.5m, 1m, 2m, 4m instead of standard box-overlap. NDS
is a weighted average of mAP, attributes metrics includ-
ing translation, scale, orientation, velocity, and other box
attributes [2]. For 3D tracking, AMOTA[12] is used as cri-
teria:
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where r is a recall threshold, IDSr, FPr, FNr are
the number of ID switches, false positives, and false neg-
atives until the top-scored detections reaching recall r, re-
spectively. P is the total number of annotated objects in the
dataset, and n = 40.

1.2. Detection on Waymo

Waymo Open Dataset [10] contains 798 training se-
quences and 202 validation sequences for vehicles and
pedestrians. The point-clouds are captured with a 64 lanes
Lidar, which produces about 180k Lidar points every 0.1s.
Our Waymo model uses a detection range of [−75.2m,
75.2m] for the X and Y axis, and [−2m, 4m] for the Z
axis. CenterPoint-Voxel uses a (0.1m, 0.1m, 0.15m) voxel
size following PV-RCNN [8] while CenterPoint-Pillar uses
a grid size of (0.32m, 0.32m). We use the same training
schedule with nuScenes with an initial learning rate 3e-3.

Evaluation Metric We adopt the official released eval-
uation tools for evaluating our method, where the mean
average precision (mAP) and the mean average precision
weighted by heading (mAPH) are used for evaluation. The
rotated IoU threshold is set as 0.7. We report LEVEL 2
mAP/mAPH for all experiments that denotes the ground-
truth objects with at least 1 inside point.

1.3. Detection on KITTI

Transfer experiments have been done on the limited
KITTI [4] dataset to evaluate generalization. KITTI con-
tains 7481 training samples and 7518 testing samples. We
follow the frequently used train/val split mentioned in [8] to
divide the training samples into train split (3712 samples)
and val split (3769 samples). We train the model with the
batch size 24, learning rate 0.01 for 80 epochs on 8 V100
GPUs.

Evaluation Metric All results are evaluated by the mean
average precision with a rotated IoU threshold 0.7 for cars
and 0.5 for pedestrians and cyclists. The validation results
are calculated with 11 recall positions to compare with the
results by the previous works.



initial.
0.05 0.1 0.5 1

AMOTA↑ AMOTP↓ AMOTA↑ AMOTP↓ AMOTA↑ AMOTP↓ AMOTA↑ AMOTP↓
random init. 34.57 83.44 50.01 69.29 61.70 61.27 63.66 60.59

GCC-3D 35.47 83.14 51.16 68.97 62.31 61.08 64.17 60.53
Table 1. 3D tracking with limited labels on nuScenes val set evaluated with AMOTA and AMOTP metric. “random init.” denotes random
initilization baselines. ↑ is for higher better and ↓ is for lower better

2. Implement Details
2.1. GCC-3D Pre-train Setup

Architecture Our implementation is based on the open-
sourced code of CenterPoint[15], we experiment with both
VoxelNet[17] encoder and PointPillars [6] encoder.

In the Geometry-aware Contrast pre-train module, the
initial voxel/pillar-wise feature will be passed through a
two-layer MLP (with dimensions 128, 64) to project into
latent space, with batch norm and ReLU. The latent space
feature will be concatenated with the initial feature and
passed through a one-layer MLP with dimension 64. We
use the obtained feature for contrast pre-train. During fine-
tune stage, the initial voxel/pillar-wise feature will be used.
In Harmonized Clustering module, RoIAligned features of
each pseudo instance will be passed through a two-layer
MLP (with dimension 192, 128), with a batch norm, ReLU
to project the feature to latent space for cluster pre-train.
This two-layer MLP will not be used in fine-tune stage.

Multi-view Augmentation Setup We generate multi-
views of the origin scene by random flip, scaling with a
scale factor sampled from [0.95, 1.05] and rotation around
vertical yaw axis between [-10, 10] degrees. We also do
downsampling by a factor sampled from [0.9, 1].

Pseudo-instance Generation With available motion
voxel set, we use morphology [1, 9] operation to get mo-
tion instance patches. First, we convert indexes in motion
voxel set to a binary image (the image size is x-z point cloud
range/voxel size). All motion voxel localizations have 1 and
others have 0. Second, two opening operators with 3×1 and
1×3 kernels are used on binary images to smooth area con-
tours and break narrow discontinuities. Finally, we choose
the connected area of the top K = 50 point density as mo-
tion instance patches.

2.2. Data-Efficient 3D Object Detection Benchmark

During the fine-tuning stage, we conduct data augmen-
tation of random flip, scaling with a scale factor sampled
from [0.95, 1.05] and rotation around vertical yaw axis be-
tween [-10, 10] degrees. We also use ground-truth sam-
pling, which copies and pastes points inside an annotated
box from one frame to another frame. For nuScenes dataset,
we fine-tune the models for 20 epochs. For Waymo dataset,
we fine-tune the models for 12 epochs on VoxelNet and 36
epochs on Pointpillar. All models are trained with batch
size 6 on 8 V100 GPUs.

Deep Harmonization Motion nuScenes
Cluster Term Patch mAP delta

random init. 25.79 -
✓ 27.84 +2.05
✓ ✓ 28.29 +2.50
✓ ✓ 28.93 +3.14
✓ ✓ ✓ 30.32 +5.77

Table 2. Comparison with different patch selection strategies. All
results are finetuned on 5% nuScenes with Centerpoint-pp.

2.3. Compare with SOTA Experiments Setup

The results of SECOND, PARTˆ2 and PV-RCNN in Ta-
ble 3 (main body) are based on codebase OpenPCDet [11].
For fair comparison on Waymo, we use the same training
schedule for 20% labeled dataset and train the model for 30
epochs following settings in OpenPCDet.

2.4. Transfer Experiments Setup

To evaluate the transfer capacity of our GCC-3D
pre-training, we fine-tune on different datasets (KITTI,
nuScenes and Waymo) and different models, including PV-
RCNN [8], SECOND [13] and Centerpoint [15].

KITTI We fine-tune on the whole training set with the
task-specific head of PV-RCNN [8] and SECOND [13] fol-
lowing the official codebase PCDet [11]. The training batch
size is 24, learning rate is 0.01. The models are trained
for 80 epochs on 8 V100 GPUs. Specifically, we initialize
the 3D sparse convolution and RPN of PV-RCNN by pre-
trained encoder φ and ϕ from GCC-3D and the Voxel Set
Abstraction Module is randomly initialized. For SECOND,
weights can be loaded from GCC-3D except for final clas-
sification and regression layers. Note that pretraining from
nuScenes has unmatched point feature dimension due to ex-
tra relative timestamp of accumulating multi-sweeps point
cloud. Therefore, the point feature is made up 0 when we
load nuScenes pre-trained weights.

nuScenes We use a single sweep point cloud to avoid the
above-mentioned problem of inconsistent input dimension.
The point cloud is so sparse that the result is poor.

Waymo As the same with KITTI setup, we make up in-
put dimension to be consistent with nuScenes. We fine-tune
on 100% labeled training set based on Centerpoint-voxel
and follow the training settings in Data-Efficient 3D Object
Detection Benchmark (Section 1.1).



Method
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
SECOND 88.46 78.57 77.42 61.15 55.32 50.57 81.98 68.19 63.45

GCC-3D from nusc (SECOND) 88.16 78.41 77.25 61.50 56.56 51.9 86.01 70.07 65.37
GCC-3D from wm (SECOND) 88.54 78.52 77.41 60.59 54.88 49.98 83.89 68.56 63.94

PV-RCNN 88.94 79.12 78.52 65.21 58.99 54.29 86.89 71.20 66.23
GCC-3D from nusc (PV-RCNN) 89.13 83.59 78.77 65.24 57.53 54.07 87.11 71.14 65.77
GCC-3D from wm (PV-RCNN) 89.08 83.67 78.80 66.14 60.34 56.04 86.81 69.78 65.36

Table 3. Comparison with random initialization on KITTI validation set. “from nusc” indicates pre-training on nuScenes dataset. “from
wm” means pre-trained weights from Waymo dataset.

Model
All

Car Truck CV. Bus Trailer Barrier Motor. Bicycle Ped. TC.
mAP NDS

WYSIWYG [5] 35.0 41.9 79.1 30.4 7.1 46.6 40.1 34.7 18.2 0.1 65.0 28.8
3DSSD [14] 42.6 56.4 81.2 47.2 12.6 61.4 30.5 47.9 36.0 8.6 70.2 31.1

HotSpotNet [3] 50.6 59.8 83.3 52.7 15.3 63.7 35.3 52.0 53.7 25.5 74.8 50.3
CBGS [18] 50.6 62.3 - - - - - - - - - -

centerpoint-pp [15] 49.6 60.2 83.9 50.1 12.0 61.4 31.3 60.1 44.2 19.0 78.7 55.4
centerpoint-voxel [15] 56.2 64.5 84.8 53.9 16.8 67.0 35.9 64.8 55.8 36.4 83.1 63.4

GCC-3D (centerpoint-pp) 50.8 60.8 84.4 52.8 12.3 62.4 32.3 61.0 47.4 21.9 79.2 54.8
GCC-3D (centerpoint-voxel) 57.3 65.0 85.0 54.7 17.6 67.2 35.7 65.0 56.2 36.0 82.9 63.7

Table 4. Comparison with state-of-the-art on nuScenes. We show the NDS, mAP, and AP for each class. Abbreviations: construction
vehicle (CV.), pedestrian (Ped.), motorcycle (Motor.), and traffic cone (TC.).

2.5. Other SSL Methods Setup

The training and optimization setup of PointContrast
pre-train follow the same setup as Geometry-aware Contrast
pre-train. And the setup of SwAV and Deepcluster follow
the same setup as Harmonized Clustering pre-train.

3. More Quantity Results
3.1. Ablation Study on Instance Clustering

In harmonized clustering stage, we need ego-motion in-
formation to provide pseudo instances. However, these in-
stances are not necessarily generated by moving patches
and can be generated by random sampling or traditional
clustering methods. Therefore, our module can be easily
adopted on datasets without ego-motion. We did experi-
ments to evaluate the effectiveness of harmonized cluster-
ing without the pseudo-instance proposal. To do that, we
replace motion patches by randomly cropping patches from
the dense point area of the scene. These differently selected
patches are used for Deepcluster pre-train and harmonized
clustering pre-train. We test these models on nuScenes
dataset with 5% of supervised data during fine-tune stage.
The results in Table 2 can be observed that both the harmo-
nization term and motion proposal module help boost the
performance (mAP 28.29% v.s 30.32% and mAP 28.93%
v.s 30.32%). In particular, even though we randomly se-
lect patches from the scenes without ego-motion, our har-
monized clustering model can still boost the performance

significantly (mAP 25.79% v.s 28.93%).

3.2. Data-Efficient Object Tracking

To further evaluate pre-training performance on object
tracking, we predict the positional difference of each de-
tected object between the current and the past frame, and
produce an additional regression term v during the super-
vised fine-tuning phrase, following [15, 16]. Then, de-
tected objects in the current frame can be associated with
past ones using closest distance matching and are kept un-
til unmatched tracking up to T = 3 frames. Table 1 shows
our unsupervised pre-training outperforms random initial-
ization in object tracking task.

3.3. 3D Object Detection on KITTI

We show the detailed transfer results on KITTI for car,
pedestrian and cyclist in Table 3.

3.4. 3D Object Detection on nuScenes across Classes

We show the detailed comparison, APs of each class,
among different methods in Table 4. Our GCC-3D draws
better performance compared to all current state-of-the-art
methods on nuScenes by a large margin. Not only on mAP,
it also outperforms those methods on AP of each class.

4. Quality Results
We show the quality comparisons of the train from

scratch (denoted “baseline”) Centerpoint-pp [15] and our



GCC-3D pre-training (indicated “GCC-3D”) on 10% la-
beled nuScenes in Fig.1 and 2. The GCC-3D is more ac-
curate than the baseline due to the help of discriminative
spatial and semantic features. For example, random ini-
tialization produces more false positives than the proposed
GCC-3D pre-training in Fig.1. We also show the quality
comparisons based on Centerpoint-voxel [17] in Fig.3.
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Figure 1. Qualitative results comparison on nuScenes val set with 10% labeled data. We compare the random initialization (baseline) and
our GCC-3D pre-training (GCC-3D) based on PointPillars[6]. Our method is more accurate than the baseline method due to the help of
the spatial sensitive and semantic representation. The green boxes are the groundtruth and the blue ones present the predicted results.
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Figure 2. Qualitative results comparison on nuScenes val set with 10% labeled data. We compare the random initialization (baseline) and
our GCC-3D pre-training (GCC-3D) based on PointPillars[6]. The green boxes are the groundtruth and the blue ones present the predicted
results.
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Figure 3. Qualitative results comparison on nuScenes val set with 10% labeled data. We compare the random initialization (baseline) and
our GCC-3D pre-training (GCC-3D) based on VoxelNet[17]. The green boxes are the groundtruth and the blue ones present the predicted
results.


