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Figure 1: The snapshot from ScanNet (V2) benchmark on March 18th 2021. Our SSTNet ranks top on the mAP leaderboard.

1. Network Specifics
In this section, we present architectural specifics of our

proposed Semantic Superpoint Tree Network (SSTNet).

1.1. Backbone and Learning Branches

Fig.2-(a) illustrates the architecture of our backbone,
where we employ a U-Net [4] style network with a depth
of 5. Fig.2-(b) illustrates the branch specifics of semantic
scoring and offset prediction.

1.2. The Classifier for Tree Traversal and Splitting

Fig. 3 presents the multi-layer perceptron (MLP) of the
binary classifier φ that is used for generation of object pro-
posals, where we also show how the classifier is used when
traversing the tree.

1.3. CliqueNet

An illustration on how a tree branch can be converted as
a graph clique and the thus constructed CliqueNet.
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Figure 2: Module specifics of the backbone, semantic scoring, and offset prediction used in SSTNet. N is the number of
input points, and numbers in each block denote those of output channels.
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Figure 3: An illustration on the node-splitting classifier φ and how it is used when traversing the semantic superpoint tree.
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Figure 4: An illustration on how a tree branch can be con-
verted as a graph clique and the thus constructed CliqueNet.
Cw denotes the number of output channels in each Clique-
Layer (CL).

Fig. 4 illustrates how a tree branch can be converted as
a graph clique and also the construction of CliqueNet ψ.
Given an input feature F †C , the ith layer of the CliqueNet
(i.e., the ith CliqueLayer) performs the following computa-
tion

ReLU(D̄
−1/2
C ĀCD̄

−1/2
C F †CW

i
ψ), (1)

where the adjacency matrix AC is shown in Fig. 4-(a),
ĀC = AC + I , and D̄C is the diagonal degree matrix of
ĀC . CliqueNet specifics are given in Fig. 4-(b).

2. Traing of the Proposal Evaluation Module
We follow [3] and use a ScoreNet (denoted as ω) to

evalaute the proposals refined by CliqueNet. For such a
proposal B−t , we get the corresponding point-wise features
F̃B−

t
= [f̃1, . . . , f̃N−

t
] ∈ Rn×N

−
t , and use the following
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Figure 5: Visualization of the semantic and instance segmentation results on the validation set of ScanNet v2 (top) and S3DIS
(bottom).

loss to train the ScoreNet

Levaluation =
1

|R|
∑
t∈R

BCE(ω(F̃B−
t

), v∗t ), (2)

where the value v∗t of supervision used in binary cross-
entropy loss (BCE) is determined by the Intersection over
Union (IoU) between the proposal B−t and its best matched
ground-truth instance; we denote the IoU value as IoUB−

t
.

Given IoUB−
t

, v∗t is determined as

v∗t =


0 if IoUB−

t
< θl

1 if IoUB−
t
> θh

1
θh−θl (IoUB−

t
− θl) otherwise

(3)

where we set the hyperparameters θl = 0.25 and θh = 0.75.

3. Results Comparison Visualization

In this section, we show more comprehensive compar-
isons with 3D-MPA[2], SSEN[5] and PointGroup[3] on
ScanNet(V2)[1]. As shown in Fig. 5, our results can better
maintain the boundaries and the integrity of the segmenta-
tion results.
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