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We first give more details on the training of MANet and
the non-blind SR model RRDB-SFT. Then, we show the
visualization of kernel distribution. We also report interest-
ing results on consecutive degradation and image quantiza-
tion. Last, we provide more visual comparisons of different
methods on synthetic and real-world images.

1. Training Details of MANet
For MANet, Adam optimizer [5] with β1 = 0.9 and

β2 = 0.999 is used to train the model for 300,000 itera-
tions. Learning rate is initialized as 2e − 4 and reduced by
half every 50, 000 iterations. The training time is about 15
hours on a Tesla V100 GPU.

2. Non-Blind SR Model RRDB-SFT
We design a non-blind super-resolver based on RRDB

block [11] and SFT layer [10]. The model is dubbed as
RRDB-SFT and the architecture is shown in Fig. 1. As one
can see, RRDB-SFT reconstructs the HR image by taking
the LR image and the corresponding kernel as input. Specif-
ically, it first reshapes the kernel from size of h × w to hw
and reduces the dimensionality from hw to l by principal
component analysis (PCA). After that, the kernel PCA vec-
tor is stretched to a kernel PCA map of size l × H

s × W
s ,

where H , W and s are HR image height, width and scale
factor, respectively. Then, the kernel PCA map is concate-
nated with different levels of image features via the SFT
layers. More details of the RRDB block and SFT layer can
be found in [11] and [10], respectively.

Interestingly, although we train the model with spatially
invariant kernels, RRDB-SFT can naturally deal with spa-
tially variant kernels as the stretched kernel map includes
kernel PCA vectors for every position on the LR image in-
put. Thus, the network is able to learn the correspondences
between local LR image patches and kernels. When com-
bined with MANet for spatially variant blind SR, we first
downscale the kernel prediction of MANet to match the spa-
tial size of LR image and reduce the channel dimensionality
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Figure 1: Architecture of the non-blind super-resolver RRDB-
SFT. It takes blur kernels and the LR image as input, and outputs
the HR image. Kernel feature and image feature are fused by the
SFT layer.

by PCA. Then, the kernel PCA map is input to the SFT lay-
ers (kernel stretching is skipped) to help the reconstruction
of HR image.

In experiments, we use 10 RRDB blocks and 10 SFT
layers. The kernel PCA vector dimension is set to 15. Sim-
ilar to MANet, we randomly crop 192× 192 image patches
from DIV2K [1] and Flickr2K [8], and augment them by
random flip and rotation in training. The image patches
are blurred by random kernels for HR-LR image pair gen-
eration. We use mean absolute error (MAE) between SR
image and HR image as the loss function. Adam opti-
mizer [5] with β1 = 0.9 and β2 = 0.99 is used to train
the model for 480, 000 iterations, with a batch size of 16.
The learning rate is initialized as 2e − 4 and halved every
120, 000 iterations. It takes about two days to train RRDB-
SFT on a Tesla V100 GPU. When combined with MANet,
we freeze the parameters of MANet and fine-tune RRDB-
SFT. The learning rate and total number of iterations are
5e − 5 and 200, 000, respectively. Note that the blind SR
performance could be further improved with a better non-
blind SR model.

3. Visualization of Kernel Distribution
We visualize the distribution of estimated kernels on

“img017” in Urban100 [4] by t-SNE [6]. As Fig. 2 shows,
the estimated kernels are diversified, ranging from kernels
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Figure 2: The t-SNE visualization of the distribution of estimated
kernels on “img017” in Urban100 [4] when scale factor is 4. The
corresponding HR image is blurred by a spatially invariant kernel
in the top left green rectangle.

close to the ground-truth, to nearly isotropic kernels. It
is worth pointing our that most kernels are not obviously
wrong, e.g., being vertical to the ground-truth. Consider-
ing the high LR image PSNR achieved by MANet, we be-
lieve most of these kernels are “correct” kernels, leading
to a high PSNR of the LR image. Besides, as can be seen
from the image-kernel correspondences in Fig. 1 of the pa-
per, kernels close to the ground-truth are mainly estimated
from image patches with corners or rich textures, while flat
patches are less discriminative, producing a fixed isotropic
kernel.

4. Impact of Consecutive Degradation
As discussed in the paper, MANet estimates kernels

based on image patch characteristics. Therefore, it is in-
teresting to explore the effects of consecutive degradation.
We first generate a LR image following the ordinary degra-
dation process. Then, we blur the LR image by another ker-
nel and downsample it again. As shown in Fig. 3, MANet
tends to estimate kernels that are close to the second kernel,
omitting the first kernel. This indicates that the image patch
distribution is mainly determined by the latest degradation.

5. Impact of Image Quantization
Blurring the image with a kernel can lead to distinctive

image patch characteristics. In image SR, the blurred im-
age is further downsampled and quantized. In the paper,
experiements on different scale factors have shown the im-
pact of downsampling. Here, we try to explore the impact of
quantization. Fig. 4(a) shows the kernel estimations at dif-
ferent positions when the LR image is unquantized. Surpris-
ingly, MANet is able to roughly estimate the kernel from a
blurred 1×1 cross, whose HR counterpart only has a single
black point as shown in Fig. 4(b). In contrast, on quantized
images, it can only deal with image patches whose sizes are

Figure 3: Kernel estimation results of the proposed MANet under
consecutive degradation when scale factor is 4. The testing image
is “img077” in Urban100 [4]. We blur and downsample the HR
image twice with two different kernels (in total, 16×), which are
shown in the blue and green rectangles. The shown image is the
4× nearest neighbour interpolation of the final LR image.

at least 9 × 9. This can be attributed to information loss in
image quantization after blurring and downsampling.

6. More Visual Comparisons
We provide more visual comparisons on both synthetic

and real-world images in Fig. 5 to show the effectiveness
of our model. Note that we train all these model with only
L1 pixel loss for simple and fair comparison, though it is
known that GAN loss can further improve the visual quality.
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(a) Kernel estimation results without image quantization (b) HR image

Figure 4: (a) shows kernel estimations of MANet at different positions on a synthetic image for scale factor 4, when the LR image is
unquantized. The shown image is the nearest neighbour interpolation of the LR image, which was generated by a Gaussian kernel with
parameters σ1 = 6, σ2 = 1 and θ = π

4
, as shown in the down right green rectangle. The corresponding HR image has 9 black crosses

(1 × 1, 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 21 × 21, 41 × 41 and 61 × 61), whose kernel predictions are shown in the right purple
rectangles. (b) shows the corresponding HR image.
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Figure 5: More visual results of different methods on synthetic and real-world images for scale factor 4.
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