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In the supplementary material, we will provide more
technical background, implementation details, experimen-
tal results and visualized results of our method. Specifically,
we discuss the related works without matching in Sec. 1.
We show the data augmentation approaches for training and
the settings of our matching layer in Sec. 2. Moreover, we
display our experimental results on DAVIS 2016 validation
set in Sec. 3. we present the predicted masks before/after
refinement in Sec. 4, visualization of the memories in Sec.
5, visualization of the alignment in Sec. 6 and some failure
cases in Sec. 7.

1. Extra Related Works

Online Learning. Fine-tuning models towards target
objects at test time is a simple yet effective solution to rec-
ognize one-shot objects in VOS. OSVOS [1] fine-tunes its
segmentation network on labelled initial frames at test time.
OnAVOS [14] fine-tunes extra on subsequent predicted
frames with high output confidences. LucidTracker [3] en-
riches initial-frame data using data augmentation. PRe-
MVOS [7] integrates several fine-tuned networks (instance
segmentation, mask refinement, and object ReID), which
makes it powerful but costly. More recently, FRTM [11]
fine-tunes a lightweight object module and has it worked
with an offline-trained segmentation network. Actually,
the online fine-tuning step could generally bring perfor-
mance improvements to the PVOS/OVOS methods (e.g.
[4, 13, 17]). However, it is usually time-consuming so that
not always feasible in real-world scenarios.

Mask Propagation. Mask propagation is the base of the
popular PVOS/OVOS methods, which works by propagat-
ing either labelled or predicted masks for future references.
However, early works using mask propagation do not in-
volve matching. For instance, MaskTrack [9] inputs pre-
vious masks additionally to its segmentation network in or-
der to refine segmentation. MaskRNN [2] propagates masks
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frame by frame through a recurrent neural network and the
optical flow. RGMP [15] uses both first-frame and previous-
frame information via a siamese encoder-decoder network.
Notably, compared with the online learning, the mask prop-
agation mechanism could be learned completely offline and
much more applicable in practice . As a result, it is further
developed to work with matching and extended to exploit as
many as possible frames in many later works (e.g. [5, 6, 8]).

2. More Implementation Details
Data Augmentation. As mentioned in the main paper,

we use video clips for training. For a given clip, firstly,
all frames are rescaled with the same factor randomly sam-
pled in [1, 1.5]. Secondly, these frames are flipped horizon-
tally and simultaneously with a probability of 0.5. Thirdly,
these frames are flipped temporally (i.e. inverse the order
of frames) with a probability of 0.5. Lastly, input patches
(352 × 352) are randomly cropped from the augmented
frames.

Settings of The Matching Layer. Our aligned matcher
consists of the proposed adaptive object alignment mod-
ule and a matching layer. The matching layer we use is
proposed in [17]. It is differentiable and performs like the
Hungarian algorithm. For both training and testing, Ngrad,
Nproj and α are set to 10, 5 and 0.1, respectively. Notably,
λ is automatically tuned as a parameter for each dataset.

3. Results on DAVIS 2016
DAVIS 2016 [10] is an early and simplified version of

DAVIS 2017, which contains 30 videos for training and
20 videos for validation. Each video in DAVIS 2016
has a single target object. Notably, the datasets in the
main paper typically include individual objects (e.g. a ‘per-
son’/‘car’/‘dog’) only, while this dataset additionally in-
cludes some compositional objects (e.g. the single ‘soap-
box’ object consists of two ‘persons’ and a ‘trolley’).

Results of our method and the SOTA methods are pre-
sented in Table 1. Compared with the best reported perfor-
mances on DAVIS 2016 validation set, our method achieves



Models J F G
GC [5] (ECCV20) 87.6 85.7 86.6
PReMVOS [7] (ACCV18) 84.9 88.6 86.8
STM [8] (ICCV19) 84.8 88.1 86.5
STM (+YV) [8] (ICCV19) 88.7 89.9 89.3
CFBI [16] (ECCV20) 85.3 86.9 86.1
CFBI (+YV) [16] (ECCV20) 88.3 90.5 89.4
KMN [12] (ECCV20) 87.1 88.1 87.6
KMN (+YV) [12] (ECCV20) 89.5 91.5 90.5
Ours 88.1 89.3 88.7
Ours (YV) 90.5 92.3 91.0

Table 1. Quantitative results on DAVIS 2016 validation set. Y V
indicates an extra use of YTVOS for training
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Figure 1. Predicted object masks of our method on DAVIS 2017
validation set. The top four rows are for single-object segmenta-
tion and the bottom four rows are for multi-object segmentation.

better results (+1.1% and +0.5%) with or without an extra
use of YTVOS. The results verify that our method could
generalizes well to both the individual objects and the com-
positional objects.

4. Visualization of Object Masks
To validate the effectiveness of our method, here we

show more qualitative results in Fig. 1. Specifically, other
than the ground-truth masks, we display the coarse masks
(before refinement) as well as the refined masks (after re-
finement). The top four rows are cases of single-object seg-
mentation, covering objects of animals, vehicles and per-
sons. The bottom four rows are cases of multi-object seg-
mentation, covering the co-occurrence of persons, animals
and vehicles.

As shown in the Fig 1, our coarse masks are already quite
accurate on the locations, sizes and shapes of target objects.
This reveals that our object matching results are highly reli-
able, thanks to the dynamic memory networks and the adap-
tive object alignment module. The RefineNet, on the other
hand, further optimizes the segmentation quality by refin-
ing the details such as boundaries (all rows), occlusions
(2nd, 5th, 6th, 7th and 8th rows) and missing parts (5th,
6th and 7th rows). To sum up, in our framework, the object
matching and the RefineNet work collaboratively to achieve
highly accurate video object segmentation.

5. Visualization of Dynamic Memory Networks
In Fig. 2, we visualize the aforementioned query-key rel-

evance scores of the dynamic memory networks. Specifi-
cally, we first compute the relevance scores between every
pixel of the space-time key feature maps from the memory
frames and all object pixels of the query feature map from
the current frame. Then, we visualize the normalized scores
on the memory frames using heat map based visualization.

As presented in Fig. 2, the target object in the first frame
presents incomplete object information with regard to the
current frame due to the scale/view/pose/occlusion varia-
tions. Our method tackles this problem by learning the com-
plementary object information from the memory frames.
Specifically, for the 1st case, the target object in the first
frame presents the lower half clues (trousers, waist, etc) of
the person appearance only and the appearance of the upper
half (clothes from 2nd frame, hands from 3rd frame, etc.)
is obtained from the memory frames. For the 2nd case, the
target object in the first frame provides the frontal appear-
ance only and the dorsal appearance of the person is gath-
ered from the memory frames. For the 3rd case, the target
object in the first frame is coarsely represented due to its
small scale and more details of the target are obtained from
the memory frames. For the last case, the target object in
the first frame misses the appearance of the flank and our
model obtains this clue from the memory frames.

6. Visualization of Adaptive Object Alignment
In Fig. 3, we visualize the template-proposal matching

with or without the proposed adaptive object alignment. For
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Figure 2. Visualization of the query-key relevance score heat maps of the dynamic memory networks. Specifically, the pixels in red have
high scores, the pixels in green have medium scores and the pixels in blue have low scores. For all cases, the target object in the first frame
presents incomplete object information with regard to the current frame due to scale/view/pose/occlusion variations. Our method tackles
this problem by learning to obtain the complementary object information from the memory frames.
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Figure 3. Visualization of the template-proposal matching with
or without the adaptive object alignment. For the simplicity of
the visualization, we first sample a few checkpoints (marked by a
white dot) from the templates (the left column). Using the align-
ment (the middle column), each checkpoint is matched with the
weighted average of all locations on a given proposal (only the
highest weighted ones are shown here and straight arrows with
different colors indicate different proposals). Without using the
alignment (the right column), each checkpoint is matched with its
spatially corresponding location on the given proposal instead.

the simplicity of visualization, we use the first-frame anno-
tations as the templates instead of the dynamic templates.
And we sample a few checkpoints from all given templates.

As shown in the the middle column, using the alignment,
each checkpoint is matched with the weighted average of
all locations on a given proposal. Weights are the similar-
ity scores between each pixel of the proposal object and all
pixels of the template in the feature space.

As can be observed in the visualization, the object
matching without the alignment might matches the check-
points with the semantically-unrelated locations, such as
negative pixels (1st and 2nd case) and the positive pixels
from the very different parts (all cases). The problem of
template-proposal misalignment is well tackled by the pro-
posed adaptive object alignment. With our method, the
checkpoints are mainly matched with the positive pixels in
the proposals. More importantly, the checkpoint of a distin-
guishable part of the target object is mainly matched with
the positive pixels from the same semantic part in the pro-
posals (the 1st, 2nd and 3rd rows). This reveals that the
adaptive object alignment method could softly align pro-
posals with templates in the feature space. In addition, the
last row in Fig. 3 shows a hard case where the target object
is severely occluded, resulting in multiple positive propos-
als (all contain positive pixels). For this case, the check-
points are perfectly matched with the most similar positive
pixels of every proposal by our model. In this way, com-
pared to the matching without the alignment, our method
compensates the information loss of the incomplete posi-
tive proposals and prevent the mismatches between parts of
proposals and the template.



Coarse Prediction Ground Truth

Figure 4. Failure cases of our method.

7. Failure Case Study
In Fig 4, we show two failure cases of our method. In

both cases, the large-scale objects are well segmented from
the background. However, for the small-scale objects (the
strings in the 1st and 2nd rows), our method produces un-
satisfactory results due to two main reasons. Firstly, using
the high-level feature maps from the backbone network, the
small-scale objects are possibly overlooked at some stages
of the whole inference process, including the detection, the
object matching and the final refinement step. Secondly,
the bounding boxes of the oblique thin strings contain much
more negative pixels with regard to the positive pixels, re-
sulting in the noisy representations of the objects in both the
detection and the matching stages. Notably, similar failure
cases are also observed in many other SOTA methods like
STM [8] and CFBI [16]. The segmentation of such small-
scale objects is actually one of the very important but un-
solved problems in semi-supervised video object segmenta-
tion.
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