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A. Visualizing the Basin of Attraction
The planar image alignment setting allows us to analyze

how positional encoding affects the basin of attraction. We
use the same image in Fig. 3 and consider the simpler case
of aligning two image patches differing by an offset. We use
a translational warp p ∈ R2 on a square box whose size is
1/3 of the raw image height and initialized to the raw center.
We aim to register the center box to a single target patch of
the same size shifted by some offset, shown in Fig. 1(a). We
optimize the image neural network f with the objective in
(4), where I1 is the center patch and I2 is the target patch,
and investigate the convergence behavior of translational
alignment as a function of target offsets. We search over the
entire pixel grid to as far as where the target patch has no
overlapping region with the initial center box.

We visualize the results in Fig. 1. Naïve positional encod-
ing results in a more nonlinear alignment landscape and a
smaller basin of attraction, while not using positional encod-
ing sacrifices the reconstruction quality due to the limited
representability of the network f . In contrast, BARF can
widen the basin of attraction while reconstructing the image
representation with high fidelity. This also justifies the im-
portance of coarse-to-fine registration for NeRF in the 3D
case. Please also refer to the supplementary videos for more
visualizations of the basin of attraction.

B. Additional NeRF Details & Results
We provide more details and results from our NeRF ex-

periments in this section (for real-world scenes in particular).

B.1. Evaluation Details

As mentioned in the main paper, the optimized solutions
of the 3D scenes and camera poses are up to a 3D similarity
transformation. Therefore, we evaluate the quality of regis-
tration by pre-aligning the optimized poses to the reference
poses, which are the ground truth poses for the synthetic
objects (Sec. 4.2) and pose estimation computed from Sf M
packages [2] for the real-world scenes (Sec. 4.3).

We use Procrustes analysis on the camera locations for
aligning the coordinate systems. The algorithm details are de-

Algorithm 1: Pre-align camera poses for evaluation

1 Function PREALIGN({[Ri, ti]}Mi=1, {[R̂i, t̂i]}Mi=1):
Input : reference poses {[Ri, ti]}Mi=1,

optimized poses {[R̂i, t̂i]}Mi=1

Output : optimized poses {[R̂′i, t̂′i]}Mi=1 aligned
to the reference poses

2 for i = {1, . . . ,M} do
3 oi = −R>i ti
4 ôi = −R̂>i t̂i
5 end
6 s, ŝ, t, t̂,R = PROCRUSTES({oi}Mi=1, {ôi}Mi=1)
7 for i = {1, . . . ,M} do
8 ô′i = sR

(
1
ŝ (ôi − t̂)

)
+ t

9 R̂′i = R̂iR
>

10 t̂′i = −R̂′>i ô′i
11 end
12 return {[R̂′i, t̂′i]}Mi=1

13 end

14 Function PROCRUSTES({oi}Mi=1, {ôi}Mi=1):
Input : reference camera centers {oi}Mi=1,

optimized camera centers {ôi}Mi=1

Output : scale s, ŝ, translation t, t̂, rotation R

15 t = 1
M

∑M
i=1 oi ∈ R3

16 t̂ = 1
M

∑M
i=1 ôi ∈ R3

17 s =
√

1
M

∑M
i=1 ‖oi − t‖22 ∈ R

18 ŝ =

√
1
M

∑M
i=1

∥∥ôi − t̂
∥∥2
2
∈ R

19 X = 1
s

(
[o1, . . . ,oM ]− t1>M

)
∈ R3×M

20 X̂ = 1
ŝ

(
[ô1, . . . , ôM ]− t̂1>M

)
∈ R3×M

21 U,S,V> = SVD(XX̂>)

22 R = UV> ∈ R3×3

23 if det(R) = −1 then
24 multiply last row of R by −1
25 end
26 return s, ŝ, t, t̂, R
27 end
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Figure 1: Visualization of the basin of attraction. (a) We aim to align a center box (yellow) to a target patch (red) at every
possible location within the raw image. For each target patch, we jointly optimize f and the translational warp p to analyze
the final warp error and the image reconstruction loss. (b) The target offsets forms a color-coded map, where green indicates
horizontal offsets and red indicates vertical offsets. The above example corresponds to the highlighted pixel. (c) The optimized
warp parameters and (d) the warp error for every target patch location, where the white contours highlight the offset error
threshold of 0.5 pixels. BARF effectively widens the basin of attraction (range of successful alignment) with a smoother
landscape compared to naïve positional encoding. (e) Without positional encoding, f has limited capacity of representing the
image details, resulting in nonzero image errors despite the registration being successful as well.

scribed in Alg. 1. We write the reference poses {[Ri, ti]}Mi=1

and the optimized poses {[R̂i, t̂i]}Mi=1 in the form of camera
extrinsic matrices, and the aligned poses can be written as
{[R̂′i, t̂′i]}Mi=1 = PREALIGN({[Ri, ti]}Mi=1, {[R̂i, t̂i]}Mi=1).
After the cameras are Procrustes-aligned, we apply the rela-
tive rotation (solved for via the Procrustes analysis process)
to account for rotational differences. We measure the rota-
tion error between the Sf M poses and the aligned poses from
NeRF/BARF by the angular distance as

∆θi = cos−1
trace

(
RiR̂

′>
i

)
− 1

2
, i = {1, . . . ,M} ,

(1)

where 〈·, ·〉 is the quaternion inner product. For additional
clarity, we provide a more detailed visualization of the opti-
mized camera poses in Fig. 2 (for the LLFF dataset).

To evaluate the quality of novel view synthesis while
being minimally affected by camera misalignment, we trans-
form the test views (provided by Mildenhall et al. [1]) to the
coordinate system of the optimized poses by applying the
scale/rotation/translation from the Procrustes analysis, as in
Alg. 1. The camera trajectories from the baseline NeRF with
naïve full positional encoding exhibits large rotational and

translational differences compared to Sf M poses in general.
For this reason, the view synthesis results from the baseline
NeRF, whose corresponding test views are also determined
using Procrustes analysis, are far from plausible. Unfortu-
nately, there is no other systematic way of determining what
the corresponding views held out from the Sf M poses would
be in the learned coordinate system. Nevertheless, we pro-
vide additional qualitative results in Fig. 3, where the novel
views are selected from a training view closest to the average
pose and sampling translational perturbations. Please also
see the supplementary video for more details.

B.2. Real-World Scenes (LLFF Dataset)

Dataset. The LLFF dataset [1] consists of 8 forward-facing
scenes with RGB images sequentially captured by hand-held
cameras. In the original NeRF paper [1], the test views
were selected by holding out every 8th frame from the video
sequence and training with the remaining frames. Unlike
Mildenhall et al. [1], however, we hold out the last 10% of
the frames for evaluation and train with the first 90% frames.
This train/test split does not assume that the held-out views
are interpolations of the training views, which allows a more
practical simulation of predicting future viewpoints from



(a)
w/ full positional encoding BARF (ours)

(b)

fro
nt

al
-f

ac
in

g 
vi

ew
to

p-
do

w
n 

vi
ew

fro
nt

al
-f

ac
in

g 
vi

ew
to

p-
do

w
n 

vi
ew

w/ full positional encoding BARF (ours)

NeRF / BARF NeRF / BARFCOLMAP (SfM)

Figure 2: Visualization of the optimized camera poses for the fern scene. The poses for both the baseline NeRF (with full
positional encoding) and BARF are initialized to the identity transform for all frames. (a) The camera poses of the baseline
NeRF get stuck in a suboptimal solution that does not accurately reflect the actual viewpoints, whereas BARF can effectively
optimize for the underlying poses. (b) We compare the optimized poses to those computed from Sf M [2] (colored in black),
where we align the pose trajectories using Procrustes analysis. The camera poses optimized by BARF highly agree with those
from Sf M, whereas those from the baseline NeRF cannot be well-aligned with Procrustes analysis. Therefore, there is no
systematic way of finding a reasonable set of corresponding held-out views with respect to the optimized coordinate system.

Fern Flower Fortress Horns Leaves Orchids Room T-rex

split 18 / 2 31 / 3 38 / 4 56 / 6 24 / 2 23 / 2 37 / 4 50 / 5
total 20 34 42 62 26 25 41 55

Table 1: Dataset statistics of the train/test splits for the real-
world scene (LLFF) experiments, where we hold out the last
10% frames from each sequences.

previous observations. The statistics of the train/test split for
each scene is provided in Table 1.

Full comparison. We provide a more complete evaluation
of the LLFF experiment in Table 2, where we also include
the baseline without any positional encoding. Note that
we consider the same schedule for all scenes in the dataset
(adjusting the positional encoding from iterations 20K to
100K); due to the per-scene optimization nature, however,
the optimal coarse-to-fine scheduling for each scene would
actually be data-dependent. Despite this, the coarse-to-fine
scheduling considered here already allows BARF to achieve
an averaged similar or better performance on real-world
scenes. An exhaustive analysis of searching for the best
scheduling is currently out of scope of this paper.

In the main LLFF experiments, we sample 3D points
along each ray linearly in the inverse depth (disparity) space,
where the lower and upper bounds are the image plane and
infinity respectively (i.e. 1/znear = 1 and 1/zfar = 0). To
analyze the effect of depth parametrization on the perfor-

mance of real-world scenes, we run an additional set of the
same experiments by sampling the 3D points in the regular
(metric) depth space, bounded by znear = 1 and zfar = 20.

We report the quantitative results in Table 3. The baseline
NeRF with full positional encoding still performs poorly
in all metrics. Although the baseline without positional
encoding may be slightly better than BARF in this setup, all
methods being compared here exhibit better performance
when the 3D points are sampled in the inverse depth space.
We present empirical results as a supplement and leave a
complete analysis of depth parametrization to future work.
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Figure 3: Additional novel view synthesis results from the real-world scene experiment (LLFF dataset). Instead of visualizing
the held-out views computed by Procrustes analysis, we show qualitative results at new viewpoints by sampling camera pose
perturbations around the viewpoint from the training set (closest to the average pose). Note that for this set of qualitative
results, we do not have ground-truth RGB images to compare against. BARF can optimize for scene representations of much
higher quality. Please refer to the supplementary video for more details.



Scene

Camera pose registration View synthesis quality
Rotation (°) ↓ Translation ↓ PSNR ↑ SSIM ↑ LPIPS ↓

full w/o
BARF

full w/o
BARF

full w/o
BARF

ref. full w/o
BARF

ref. full w/o
BARF

ref.
pos.enc. pos.enc. pos.enc. pos.enc. pos.enc. pos.enc. NeRF pos.enc. pos.enc. NeRF pos.enc. pos.enc. NeRF

Fern 74.452 0.194 0.191 30.167 0.194 0.192 9.81 23.73 23.79 23.72 0.187 0.709 0.710 0.733 0.853 0.371 0.311 0.262
Flower 2.525 0.883 0.251 2.635 0.297 0.224 17.08 24.66 23.37 23.24 0.344 0.739 0.698 0.668 0.490 0.200 0.211 0.244
Fortress 75.094 0.320 0.479 33.231 0.289 0.364 12.15 28.35 29.08 25.97 0.270 0.774 0.823 0.786 0.807 0.206 0.132 0.185
Horns 58.764 0.182 0.304 32.664 0.170 0.222 8.89 22.27 22.78 20.35 0.158 0.724 0.727 0.624 0.805 0.312 0.298 0.421
Leaves 88.091 2.938 1.272 13.540 0.468 0.249 9.64 19.08 18.78 15.33 0.067 0.566 0.537 0.306 0.782 0.375 0.353 0.526
Orchids 37.104 0.550 0.627 20.312 0.396 0.404 9.42 19.27 19.45 17.34 0.085 0.566 0.574 0.518 0.806 0.313 0.291 0.307
Room 173.811 0.384 0.320 66.922 0.311 0.270 10.78 30.71 31.95 32.42 0.278 0.928 0.940 0.948 0.871 0.135 0.099 0.080
T-rex 166.231 0.138 1.138 53.309 0.261 0.720 10.48 22.48 22.55 22.12 0.158 0.783 0.767 0.739 0.885 0.197 0.206 0.244

Mean 84.509 0.699 0.573 31.598 0.298 0.331 11.03 23.82 23.97 22.56 0.193 0.724 0.722 0.665 0.787 0.264 0.238 0.283

Table 2: Full quantitative comparison of NeRF on the LLFF forward-facing scenes from unknown camera poses. BARF and
our baseline without positional encoding are competitive in different metrics. An optimal coarse-to-fine schedule for BARF
could be theoretically found per scene that are at least as good as the baseline methods; exhaustively or adaptively search for
such optimal schedule is currently out of scope of this paper. Translation errors are scaled by 100.

Scene

Camera pose registration View synthesis quality
Rotation (°) ↓ Translation ↓ PSNR ↑ SSIM ↑ LPIPS ↓

full w/o
BARF

full w/o
BARF

full w/o
BARF

ref. full w/o
BARF

ref. full w/o
BARF

ref.
pos.enc. pos.enc. pos.enc. pos.enc. pos.enc. pos.enc. NeRF pos.enc. pos.enc. NeRF pos.enc. pos.enc. NeRF

Fern 164.243 0.391 0.448 18.265 0.260 0.283 9.17 23.39 23.55 22.76 0.148 0.700 0.700 0.655 1.041 0.362 0.335 0.397
Flower 7.462 0.177 3.282 1.959 0.211 0.724 18.81 23.63 22.99 23.37 0.408 0.710 0.651 0.654 0.657 0.224 0.227 0.272
Fortress 172.581 0.502 0.576 46.673 0.466 0.468 11.17 26.75 26.92 25.67 0.222 0.684 0.716 0.662 1.122 0.348 0.270 0.403
Horns 34.840 0.248 0.266 18.207 0.223 0.228 8.95 21.52 21.79 20.37 0.174 0.714 0.701 0.599 1.028 0.325 0.310 0.464
Leaves 4.708 1.194 1.832 1.105 0.261 0.367 11.66 18.36 17.68 16.34 0.104 0.516 0.473 0.353 0.822 0.407 0.356 0.534
Orchids 172.600 0.531 0.443 37.887 0.413 0.413 8.22 18.84 18.57 16.97 0.062 0.536 0.513 0.402 1.086 0.357 0.373 0.564
Room 160.757 0.456 0.207 51.988 0.454 0.203 8.09 30.90 31.99 32.10 0.127 0.924 0.938 0.935 1.215 0.139 0.104 0.109
T-rex 175.893 0.334 5.586 61.026 0.328 3.085 8.30 22.74 21.24 22.42 0.123 0.794 0.731 0.770 1.174 0.187 0.225 0.205

Mean 111.635 0.479 1.580 29.639 0.327 0.721 10.54 23.26 23.09 22.50 0.171 0.698 0.678 0.629 1.018 0.294 0.275 0.368

Table 3: Quantitative results of NeRF on the LLFF forward-facing scenes from unknown camera poses, sampling the 3D points
in the regular depth space (instead of the inverse depth space). Translation errors are scaled by 100.


