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A. More Implementation Details
A.1. Implementation Details of Instance-level 6D

Pose Estimation

In Sec. 5.2, we apply our proposed DualPoseNet to
instance-level 6D pose estimation and achieve remarkable
results on the benchmark YCB-Video [1] and LineMOD [3]
datasets. Here we elaborate on the adaptive modifications of
DualPoseNet to the instance-level task.

Firstly, we modify the framework in Fig. 1 and the ob-
jectives in Sec. 4.5. For Ψexp, we remove the estimation of
size and revise the training objective in Eq. (5) as follows:

LΦ,Ψexp =
1

M

M∑
i=1

∥∥RT (R∗yi + t∗ − t)− yi

∥∥
2
, (9)

where Y = {yi}Mi=1 denotes the sampled point set of object
CAD model with a total of M points. For Ψim, the trans-
formed point set {R∗yi + t∗}Mi=1 is used as input to replace
the observed P , and the objective in Eq. (6) is modified as
follows:

LΦ,Ψim
=

1

M

M∑
i=1

‖qi − yi‖2 . (10)

The above objectives are well-defined for asymmetric ob-
jects, but not suitable for symmetric ones. Following [9],
we alternatively use Chamfer distance to define the objec-
tives of symmetric objects as follows:

LΦ,Ψexp
=

1

M

M∑
i=1

min
0<j≤M

∥∥RT (R∗yi + t∗ − t)− yj

∥∥
2
,

LΦ,Ψim
=

1

M

M∑
i=1

min
0<j≤M

‖qi − yj‖2 .

(11)
CombiningLΦ,Ψexp

andLΦ,Ψim
results in the following op-

timization problem:

min
Φ,Ψexp,Ψim

LΦ,Ψexp
+ λLΦ,Ψim

, (12)
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where the penalty parameter λ is set as 1.
Secondly, we modify the objective of the refined learn-

ing in Sec.4.6, since CAD model of each object is avail-
able. Specifically, we make a pose refinement by simul-
taneously enforcing the pose consistencies of both pose de-
coders against the CAD model, and thus revise the objective
of the refined learning in Eq. (8) as follows:

min
Φ
LRefine

Φ =

1

N

N∑
i=1

min
0<j≤M

∥∥R>(pi − t)− yj

∥∥
2

+ min
0<j≤M

‖qi − yj‖2 ,

(13)

where the input point set of Ψim is the observed P , and the
predicted Q is the canonical version of P .

Thirdly, we augment our DualPoseNet with a 2nd-stage
module Ω for iterative refinement of residual pose, which
follows [9, 13]. Given the observed P and the initially pre-
dicted (R0, t0), Ω is proposed to correct the pose estimation
error by learning the residual pose:

(∆R,∆t) = Ω(P,R0, t0), (14)

and the refined pose is given as the concatenation of the
residual and initial poses:

(R, t) = [∆R|∆t] · [R0|t0]. (15)

We construct Ω based on a small PointNet [5], as shown
in Fig. 6, where the network specifics are given. During
testing, Ω is applied in an iterative manner to refine the pose,
e.g., with K iterations, the resulting pose is obtained as:

(R, t) = [∆RK |∆tK ] · · · [∆R1|∆t1] · [R0|t0], (16)

where (∆Rk,∆tk) is the predicted residual pose of itera-
tion k, and (R0, t0) is given by the refined learning of pose
consistency of the previous stage. In our experiments, K
is set as 2, following [9, 13]. We note that different from
[9, 13], we do not consider RGB embeddings in Ω for sim-
plicity.
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Figure 6. An illustration of the augmented 2nd-stage module Ω for iterative refinement of residual pose.
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Figure 7. Architectures of the pose decoders (a) SCNN-
EarlyFusion and (b) SCNN-LateFusion.

A.2. Architectures of SCNN-EarlyFusion and
SCNN-LateFusion

In Sec. 5.1.1, to evaluate the efficacy of our proposed
spherical fusion based encoder Φ, we build alternative en-
coders, SCNN-EarlyFusion (c.f. Fig. 7(a)) and SCNN-
LateFusion (c.f. Fig. 7(b)), based on a multi-scale spher-
ical CNN. For the sake of fairness, the used multi-scale
spherical CNN is constructed, similar to Φ, by stacking 8
spherical convolution layers with aggregation of multi-scale
spherical features. Fig. 7 gives the illustration, where layer
specifics are also given.

B. More Quantitative Results
B.1. Quantitative Results of the Implicit Pose De-

coder Ψim

As illustrated in Sec 4.1, there exist (at least) three ways
to obtain the pose predictions from DualPoseNet, and we
have shown the results obtained by the first and third ways
in Table 1. Here we supplement the results of the second
way on REAL275 dataset [10] in Table 5. Following [10,
7], we predict the 6D pose (rotation R and translation t)
and the 1-DoF scaling by solving Umeyama algorithm [8]
with the observed P and the predicted Q in its canonical
pose, and the multiplication of the 1-DoF scaling and the

Figure 8. Plottings of per-category average precision versus dif-
ferent thresholds on 3D IoU, rotation error, and translation er-
ror, tested on CAMERA25 (top row) and REAL275 (bottom row)
datasets [10].

3D extension ofQ gives the estimated size of P . Due to the
incompleteness of Q (as well as P), the size estimated by
Ψim in this way is less precise than that directly regressed
by Ψexp; thus performances on metrics related to IoU in
Table 5, which are greatly influenced by the precision of
size predictions, are obviously worse than those in Table
1. However, in terms of 6D pose precision, e.g., on the
metric ofm◦ncm, the results obtained by both decoders are
of similar quality.

B.2. Per-Category Performance on CAMERA25
and REAL275

Fig. 8 shows the average precision versus different
thresholds for all 6 categories on both CAMERA25 and
REAL275 datasets; it also provides independent evaluations
on 3D IoU, rotation error, and translation error.

B.3. Per-Instance Performance on YCB-Video and
LineMOD

We compare per-instance quantitative results of different
methods in Table 6 and Table 7, separately.



mAP
IoU75 IoU75 IoU75 IoU50 IoU50 IoU50 IoU50 IoU75

5◦ 5◦ 10◦ 10◦

5◦, 5% 10◦, 5% 5◦, 10% 5◦, 20% 10◦, 10% 10◦, 20% 2cm 5cm 2cm 5cm
W/o refining 4.7 7.2 13.7 29.0 44.0 54.0 79.8 35.8 28.5 34.7 49.2 65.8
With refining 5.1 7.4 14.0 30.0 44.7 54.8 77.8 35.1 29.3 35.9 50.1 66.7

Table 5. Quantitative evaluation of the Implicit Decoder Ψim on REAL275. Evaluations are based on both our proposed metrics (left) and
the metrics (right) proposed in [10].
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Figure 9. Qualitative results of DenseFusion [9] and DualPoseNet,
with or without iterative pose refinement, on the LineMOD dataset
[3]. The sampled points (in blue) of object models are transformed
by the predicted pose and projected back to 2D images.

C. More Qualitative Results
For category-level 6D pose and size estimation, we visu-

alize more qualitative results of different methods on CAM-
ERA25 and REAL275 [10] in Fig. 11 (a) and (b), sep-
arately. For instance-level 6D pose estimation, we show
qualitative comparisons between classical DenseFusion [9]
and our DualPoseNet on YCB-Video (c.f. Fig. 10) and
LineMOD (c.f. Fig. 9) datasets.
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PointFusion [12] PoseCNN Densefusion [9] Densefusion W-PoseNet [13] W-PoseNet PVN3D [2] PVN3D DualPoseNet DualPoseNet
+ ICP[11] (Iterative)[9] (Iterative)[13] + ICP [2] (Iterative)

002 master chef can 90.9 95.8 95.2 96.4 96.0 96.0 96.0 95.2 96.6 97.9
003 cracker box 80.5 92.7 92.5 95.5 93.0 95.5 96.1 94.4 92.8 99.2
004 sugar box 90.4 98.2 95.1 97.5 96.7 97.8 97.4 97.9 98.1 99.6
005 tomato soup can 91.9 94.5 93.7 94.6 94.3 94.5 96.2 95.9 95.0 95.5
006 mustard bottle 88.5 98.6 95.9 97.2 97.3 98.1 97.5 98.3 98.0 99.5
007 tuna fish can 93.8 97.1 94.9 96.6 96.5 97.3 96.0 96.7 95.6 98.1
008 pudding box 87.5 97.9 94.7 96.5 95.1 96.6 97.1 98.2 97.1 99.6
009 gelatin box 95.0 98.8 95.8 98.1 96.9 98.5 97.7 98.8 98.7 99.6
010 potted meat can 86.4 92.7 90.1 91.3 90.8 91.6 93.3 93.8 92.0 96.7
011 banana 84.7 97.1 91.5 96.6 95.8 97.2 96.6 98.2 95.7 98.4
019 pitcher base 85.5 97.8 94.6 97.1 96.3 98.3 97.4 97.6 97.0 99.7
021 bleach cleanser 81.0 96.9 94.3 95.8 95.2 96.3 96.0 97.2 97.0 99.5
024 bowl 75.7 81.0 86.6 88.2 94.3 96.2 90.2 92.8 90.1 90.2
025 mug 94.2 95.0 95.5 97.1 96.5 97.1 97.6 97.7 97.3 98.6
035 power drill 71.5 98.2 92.4 96.0 95.8 97.4 96.7 97.1 97.0 99.6
036 wood block 68.1 87.6 85.5 89.7 91.5 91.7 90.4 91.1 96.1 96.6
037 scissors 76.7 91.7 96.4 95.2 88.0 89.7 96.7 95.0 83.3 95.1
040 large marker 87.9 97.2 94.7 97.5 97.1 97.5 96.7 98.1 97.7 99.2
051 large clamp 65.9 75.2 71.6 72.9 75.7 76.1 93.6 95.6 78.5 86.8
052 extra large clamp 60.4 64.4 69.0 69.8 73.3 74.6 88.4 90.5 72.0 81.6
061 foam brick 91.8 97.2 92.4 92.5 95.8 96.9 96.8 98.2 94.3 96.9
MEAN 83.9 93.0 91.2 93.1 93.0 94.0 95.4 96.1 93.3 96.5

Table 6. Quantitative evaluation of instance-level 6D pose (ADD-S) on YCB-Video dataset [1]. Objects with bold name are symmetric.

Implicit SSD6D PointFusion [12] Densefusion [9] Densefusion W-PoseNet [13] W-PoseNet DualPoseNet DualPoseNet
+ICP[6] +ICP[4] (Iterative)[9] (Iterative)[13] (Iterative)

ape 20.6 65 70.4 79.5 92.3 91.7 94.9 89.6 96.6
bench vise 64.3 80 80.7 84.2 93.2 98.8 98.9 94.2 97.1
camera 63.2 78 60.8 76.5 94.4 98.4 99.1 90.7 97.8
can 76.1 86 61.1 86.6 93.1 96.5 97.8 92.8 97.0
cat 72.0 70 79.1 88.8 96.5 97.7 98.8 98.1 99.6
driller 41.6 73 47.3 77.7 87.0 96.3 97.1 96.3 98.8
duck 32.4 66 63.0 76.3 92.3 95.0 97.7 87.7 97.1
eggbox 98.6 100 99.9 99.9 99.8 99.8 99.8 100.0 100.0
glue 96.4 100 99.3 99.4 100.0 99.9 100.0 97.4 98.5
hole punch 49.9 49 71.8 79.0 92.1 94.4 96.5 94.4 98.8
iron 63.1 78 83.2 92.1 97.0 97.7 97.9 97.2 98.9
lamp 91.7 73 62.3 92.3 95.3 99.6 99.3 98.0 98.7
phone 71.0 79 78.8 88.0 92.8 96.8 97.6 94.5 98.5
MEAN 64.7 79 73.7 86.2 94.3 97.2 98.1 94.6 98.2

Table 7. Quantitative evaluation of instance-level 6D pose (ADD-S) on LineMOD dataset [3]. Objects with bold name are symmetric.
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Figure 10. Qualitative results of DenseFusion [9] and DualPoseNet, with or without iterative pose refinement, on the YCB-Video dataset
[1]. The sampled points of object models are transformed by the predicted pose and projected back to 2D images. Different model points
in the same scene are in different colors.
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Figure 11. Qualitative results of different methods on CAMERA25 and REAL275 datasets [10] for category-level 6D pose and size
estimation.


