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1. Experiment details of Figure 2
In order to investigate the influence of feature resolu-

tion for future segmentation prediction, in our early at-
tempts, we conducted several experiments on Cityscapes[1]
dataset using different segmentation models (i.e., Seman-
tic FPN[5], PSPNet[9], HRNet[8] and DANet[2]). We
summarize the results in Figure I. In our experiments, we
first input the image frame of resolution 1024×2048 to the
segmentation model, and the resolution of output feature
map is 256×512, then we simply downsample these feature
maps to obtain the smaller resolution ones, i.e., 128×256,
64×128 and 32×64. For each feature resolution, we train
a ConvLSTM to predict the feature maps of future unob-
served frames. The predicted feature maps are inputted to
the segmentation head of the segmentation model to gen-
erate semantic segmentation results for future unobserved
frames. As shown in Figure I, for all the segmentation mod-
els we used, as the feature resolution increases, the predic-
tion performances first increase and then decrease. This im-
plies that increasing feature resolution can be harmful for
future segmentation prediction, although it is beneficial for
image segmentation.

Considering that in the above experiments, simply down-
sampling the feature maps to obtain the low-resolution ones
will lose some information, we further conducted an exper-
iments using our proposed model to extract feature maps
with different resolutions. The corresponding results are
shown in Figure I (termed “Ours”) and are used to illustrate
Figure 2 in the main text.

2. Results on Cityscapes test set
We evaluate our model on the Cityscapes[1] test set

by submitting the model predictions to the online evalu-
ation server. We use the same model parameters (only
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Figure I. Influence of feature resolution for future semantic seg-
mentation prediction.

Table I. Future instance segmentation prediction performance on
the Cityscapes test set.

Short-term Mid-term
AP50 AP AP50 AP

Mask R-CNN [4] Oracle 58.1 31.9 58.1 31.9
F2F[6] / / 17.5 6.7
PSF[3] 31.3 14.9 19.8 8.4
Ours 42.2 21.6 27.1 12.8

Table II. Future semantic segmentation prediction performance on
the Cityscapes test set using mIoU as the evaluation metric. ALL:
all classes. MO: moving objects. †: Trained on both train and
validation set.

Short-term Mid-term
Method ALL MO ALL MO

Semantic FPN [5] Oracle 75.3 73.4 75.3 73.4
PSF[3] 67.3 58.8 57.7 48.8

F2MF[7]† 70.2 68.7 59.1 56.3
Ours 70.3 66.8 59.2 53.1

trained on the train set) as the one used in the main text
and the results are shown in Table I and Table II. For fu-
ture instance segmentation prediction, our approach outper-
forms existing methods by a large margin, which demon-
strates the effectiveness and robustness of the proposed ap-
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proach. For future semantic segmentation prediction, we
also achieve state-of-the-art performance for all classes pre-
diction. For moving objects, compared to the results on the
validation set, we observe that the performance of our ora-
cle (can be seen as an upper bound) decreases considerably,
which leads to a drop of our future prediction performance.
F2MF[7] achieves a better performance than ours but they
use the validation set as an additional training source.
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