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1. Rotation matrix implementation
A rotation matrix in d-dimensional space has d-by-d pa-

rameters, which is infeasible to learn. And as it only has
d − 1 degrees of freedom, further constraints have to be
implemented if the matrix is directly learned. To avoid
these difficulties, we define the structure parameters as d-
dimensional vectors, and for each vector, the rotation ma-
trix from a basic vector [1, 0, 0, . . . , 0]T to the give vector is
used as the rotation on class weights.

In a general case, given two vectors x and y, we want
to find the rotation matrix R from x to y. One way to do
this is to find the plane spanned by x and y, and then with
respect to this, consider the 2D rotation on the plane. With
Gram–Schmidt process, we find the orthonormal basis as

u =
x

||x||
, v =

y− < u,y > u

||y− < u,y > u||
. (1)

Therefore, P = uuT + vvT is a projection onto the space
spanned by x and y, and Q = I−uuT −vvT is the projec-
tion onto complemented subspace. The rotation only takes
place on the plain of P. In result, we can map the vector
onto the plain with basis u and v, do the rotation on it, map
this back, and add the invariant part from the complemented
subspace. The whole rotation matrix is

R = I− uuT − vvT + [u,v]Rθ[u,v]
T . (2)

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
is defined as the 2D rotation ma-

trix between x and y, with cos θ = <x,y>
||x||||y|| .

Given a structure parameter vector y = δj , we set
u = x = [1, 0, 0, . . . , 0]T , and the rotation matrix Rj is
calculated with (2). The parameter constellations are im-
plemented as

wkj = g(wk, δj) = Rjwk (3)

Table 1. Results on the iNaturalist 2018. All methods are imple-
mented with ResNet-50.

Method Accuracy

CB-Focal [4] 61.1
LDAM+DRW [3] 68.0
Decoupling [8] 69.5

GistNet 70.8

2. Details of baseline results

In [Table 1, paper], results of Plain Model, Lifted
Loss [12], Focal Loss [10], Range Loss [16], FSLwF [6]
are copied from [11]. Results of OLTR [11], Distill [15],
CB Expert [13] are copied from their papers respectively.
Places-LT results of Decoupling [8] are copied from the pa-
per. ImageNet-LT results of it are reproduced with the au-
thors’ code, because the detailed results with ResNet-10 on
three splits are not provided in the paper.

3. iNaturalist 2018 Results

We further evaluate our methods on the iNaturalist 2018
dataset, with ResNet-50 [7], and compare to state-of-the-
arts. Results are listed in Table 1.

4. Geometry of the Cross-Entropy Classifier

A popular architecture for classification is the softmax
classifier. This consists of an embedding that maps images
x ∈ X into feature vectors fϕ(x) ∈ F , implemented by
multiple neural network layers, and a softmax layer that es-
timates class posterior probabilities according to

p(y = k|x;ϕ,wk) =
exp[wT

k fϕ(x)]∑
k′ exp[wT

k′fϕ(x)]
(4)
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Figure 1. (a) The optimal classifier for two Gaussians of different
covariance has quadratic boundary; (b) Linear boundary requires
shared covariance.

where ϕ denotes the embedding parameters and wk is the
weight vector of the kth class. The model is learned with a
training set S = {(xi, yi)}n

s

i=1 of ns examples, by minimiz-
ing the cross entropy loss

LCE =
∑

(xi,yi)∈S

− log p(yi|xi). (5)

Recognition performance is evaluated on a test set T =
{(xi, yi)}n

t

i=1, of nt examples.
From Bayes rule

p(y = k|x) = p(x|y = k)p(y = k)∑
k′ p(x|y = k′)p(y = k′)

, (6)

the posterior distributions of (4) constrain the class-
conditional distributions to the form

p(x|y = k) ∝x exp[wT
k fϕ(x)], (7)

where ∝x means a proportional relationship that depends
on x. This implies that

p(x|y = k) = h(fϕ(x)) exp[w
T
k fϕ(x)−A(wk)] (8)

where h(.) is any non-negative function, and A(.) a con-
stant such that (8) integrates to 1. Hence, p(x|y = k) is an
exponential family distribution of canonical parameter wk,
sufficient statistic fϕ(x), cumulant function A(wk) and un-
derlying measure h(.) [9]. This probability distribution can
be uniquely expressed as [1]

p(x|y = k) = u(fϕ(x)) exp[−dγ(fϕ(x), µk)], (9)

where µk = ∇A(wk) is the mean of p(x|y = k), ∇A is the
gradient of A, u(.) = h(.)eγ(.), and dγ(., .) is the Bregman
divergence [2] with respect to the function

γ(µk) = wT
k µk −A(wk). (10)

Since the cumulant A(.) defines γ(.), it determines the dis-
tance function dγ(., .) and thus the geometry of the embed-
ding.

While the discussion above applies to any exponential
family distribution, the equalities above are particularly

simple to verify for the case where the class-conditional dis-
tributions are spherical Gaussians (covariances Σk = σ2I).
In this case

p(x|y = k) =
1√

(2πσ2)d
e−

1
2σ2 ||fϕ(x)−µk||2 , (11)

which can be written as (9) with

dγ(fϕ(x), µk) =
1

2σ2
e−||fϕ(x)−µk||2 . (12)

Similarly, they can be written in the form of (8), by expand-
ing the 2-norm in the exponent and defining

h(fϕ(x)) =
1√

(2πσ2)d
e−

1
2σ2 ||fϕ(x)||2 (13)

w =
1

σ2
µ (14)

A(w) =
σ2

2
||w||2. (15)

From (10) it follows that γ(µ) = 1
2σ2 ||µ||2, which generates

the Bregman divergence of (12), leading to an Euclidean ge-
ometry for all classes and spherically Gaussian class condi-
tionals.

The point of the discussion above is that the soft-
max form of (4) constrains the geometry of the embed-
ding, by defining the distance dγ(., .). The fact that
(4) is a linear classifier, i.e. has linear class bound-
aries, places further constraints on this geometry. Con-
sider the case where the Gaussian class-conditionals have
different covariances Σk. In this case, the optimal clas-
sifier is a ”softmax” of the form p(y = k|z) =

(e−zTΣ−1
k z+wT

k z−bk)/(
∑

j e
−zTΣ−1

j z+wT
j z−bj ) [5], where

z = fϕ(x), and has quadratic boundaries, as shown in the
left of Figure 1. The problem is that this classifier would
require a different divergence

dγk
(fϕ(x), µk) =

1

2σ2
e−(fϕ(x)−µk)

TΣ−1
k (fϕ(x)−µk) (16)

per class, and this is not feasible under the discussion of
the previous section. While the Gaussian of generic covari-
ance can still be written in the exponential family form, this
requires a quadratic transformation of fϕ(x).

It follows that the linear classifier is optimal if and only
if the covariance is shared, i.e. Σk = Σ,∀k, in which case
all quadratic terms of fϕ(x) can be absorbed in h(fϕ(x)),
as in (13), and thus cancel when (8) is inserted in (6). This
is illustrated in the right of Figure 1. It follows that learning
with the softmax model indirectly encourages the classes to
have shared geometry. If the geometry were different, the
CNN of (4) could not be optimal.

While learning with (5) produces a particular embedding
geometry, which we denote the natural geometry for the



training data, it is usually impossible to determine this ge-
ometry from the learned network parameters, because the
cumulant A(wk) is not observable in (4). On the other
hand, it is possible to enforce a certain geometry through
regularization. The simplest way to implement this geo-
metric regularization is to implement the classifier with (9)
and a pre-specified divergence dγ(., .), e.g. the Euclidean
distance. This encourages a desired geometry, e.g. Eu-
clidean, and corresponding class-conditionals, e.g. Gaus-
sian, even for a network trained with a few examples per
class. Hence, it can improve generalization when training
data is scarce. This type of regularization is leveraged by
popular architectures for few-shot learning, e.g. the proto-
typical network [14].
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