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A. Statistics of Datasets
In Table 7, we summarize the statistics of four VideoQA datasets used in our experiments. TGIF-QA dataset includes

four tasks: Action, Transition (Trans.), FrameQA, and Count. Action and Trans. are of multiple-choice task with five answer

choices per question, and FrameQA and Count are of open-ended task. MSVD-QA and MSRVTT-QA datasets only contain

open-ended questions with a pre-defined answer set of size 1,000. Questions are simply divided into five types (i.e. what, who,
how, when and where) according to the initial word. Youtube2Text-QA dataset consists of the videos from MSVD video set

and the question-answer pairs collected from Youtube2Text video description corpus. Both open-ended and multiple-choice

tasks exist.

Table 7. Statistics of the VideoQA datasets used in our experiments. #MC: the number of answer choices for multiple-choice questions.

Dataset #Video
#Question

Vocab. size Ans. size #MC
Train Val Test

TGIF-QA 71,741 125,473 13,941 25,751 8,000 1,746 5

MSVD-QA 1,970 30,933 6,415 13,157 4,000 1,000 NA

MSRVTT-QA 10,000 158,581 12,278 72,821 8,000 1,000 NA

Youtube2Text-QA 1,970 88,350 6,489 4,590 6,500 1,000 4

B. Visualization Results
We show more visualization results including some failure examples in Figure 8. It is seen from successful examples

(shown on the left) that our model is able to focus on crucial objects and frames, and capture appropriate object-level and

frame-level relationships, thus giving the correct answer. On the right we show some failure examples. The analysis is given

as below.

In the first example, the answer-relevant object arm is hard to detect compared with the conspicuous object hand (or

finger). Besides, when the man bounces arms, the hands are also bounced jointly. Therefore, the model tends to predict the

answer related to hand (or finger). In the second example, since a regular explosion is usually followed by many scattered and

asynchronous explosions, it is particularly difficult for models and even humans to precisely count the number of fireworks

explosion. For the third example, although successfully retrieving the relevant objects and frames, the model mistakenly

recognizes the key object mower as car. We find that mower is a rare answer in the dataset, and is similar to car in appearance.

Therefore, the model may require more samples that have “mower” as the ground-truth answer to learn the fine-grained

distinctions between mower and car. In the last example, the given video frames are rotated 90 degrees. This may result in

that the action of “fall” is mistaken for the inverse action (e.g. “lift”), thus affecting the decision of the model. We believe

these analysis of failure examples may inspire the future research on VideoQA.
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Q: What does the man on left do 3 times?
A: (Baseline) Bounce      (Ours) Wave hand     (GT) Wave hand

man
leaning man

hand

leaning man
man

waving hand
man

waving hand
black pole

hand
man

Q: How many times does the ballerina lift leg?
A: (Baseline) 4                       (Ours) 6                      (GT) 6
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Q: How many boys are doing the wheelbarrow race and one rolls?
A: (Baseline) Four                   (Ours) Two                  (GT) Two
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Q: What does the lady do before lift eyeglass?
A: (Baseline) Talk   (Ours) Wipe forehead    (GT) Wipe forehead
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Q: What does the man do 7 times?
A: (Baseline) Point finger     (Ours) Point finger     (GT) Bounce arms
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Q: How many times do the fireworks explode?
A: (Baseline) 4                       (Ours) 6                      (GT) 10
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Q: What is the dog driving riding?
A: (Baseline) Car                   (Ours) Car                  (GT) Mower
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Q: What does the girl do before fall onto a guy?
A: (Baseline) Fidget      (Ours) Hair in face       (GT) Sit on a rail
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Figure 8. Visualization results generated by our HAIR. Successful examples are shown on the left and failure examples are on the right.
GT: Ground-Truth.

C. Number of Detected Objects
We investigate the impact of different number of detected objects in Table 8. N = 6 attains the best performance on most

tasks. Thus, by default, we use 6 detected objects per frame in experiments. N = 2 achieves the worst performance because

some important objects may be missed. Using too many objects (e.g. N = 10) produces slight performance drop on most

tasks. This may be due to that most samples in the dataset only rely on several salient objects to answer the question and

feeding too many objects into network would confuse the model.

Table 8. Comparison of different number of detected objects on TGIF-QA.

#objects per frame Action Trans. FrameQA Count

N = 2 76.0 81.5 58.6 4.08

N = 6 77.8 82.3 60.2 3.88
N = 10 77.2 82.1 60.9 3.93

D. Multi-Scale Node Aggregation
For the VideoQA task, answering different questions usually needs temporal information of different durations. For

example, answering the question “How many times do the fireworks explode?” may need information across the whole

video, while answering the question “How many boys are doing the wheelbarrow race and one rolls?” may only need

information from a few key frames. To this end, we develop a multi-scale node aggregation method to model the temporal

information of different durations. The module consists of H heads, in which the core component is a 1D temporal average

pooling layer with specific kernel size. We experiment with different H . As shown in Table 9, incorporating the multi-scale

temporal information significantly improves the performance on the tasks that require strong temporal reasoning, such as



Action and Trans. tasks. It is not surprising that slight performance improvement takes place on the FrameQA task, where a

single frame is sufficient to infer the answer.

Table 9. Comparison of different number of heads in the multi-scale node aggregation on TGIF-QA.

#heads (kernel sizes of temporal pooling) Action Trans. FrameQA Count

H = 1 (1) 75.3 80.6 59.5 4.08

H = 2 (1, 2) 76.8 81.7 60.0 3.97

H = 4 (1, 2, 3, 4) 77.8 82.3 60.2 3.88

E. Prediction Examples on MSRVTT-QA
In Figure 9, we show some prediction examples on the MSRVTT-QA dataset that contains longer video sequences. On

these examples, our model gives the correct answer.

Q: How many men discussed the supreme court?                                                        A: (Baseline) Four          (Ours) Two          (GT) Two

Q: What is someone driving a car on?                                                                          A: (Baseline) Ground     (Ours) Road         (GT) Road

Q: What is a man with messy hair doing?                                                                     A: (Baseline) Play         (Ours) Cook         (GT) Cook

Q: What is there is a young man doing?                                                                        A: (Baseline) Visit        (Ours) Hike          (GT) Hike

Q: What does a guy in a gym pick up while people dance behind him?                       A: (Baseline) Box         (Ours) Board        (GT) Board

Figure 9. Prediction results on MSRVTT-QA. GT: Ground-Truth.


