
Appendix A. Experimental Setup

All the experiments were performed in the PyTorch

framework using a 4-way NVIDIA RTX-2080ti GPUs.

For ImageNet, the experiments are conducted on ResNet-

50 [10] and MobileNet-v2 [26], which covers both the

popular normal-size model and the state-of-the-art compact

model. We adopt the identical data augmentation configura-

tion as ResNet series [10]. Moreover, all the reported classi-

fication accuracy on the validation dataset is the single-crop

result. The batch size used for inference is 128. We also

want to highlight that both the first and last layers are quan-

tized in this work. Besides, thanks to the representation su-

periority of our proposed AFP format, even with low overall

bit-width (nman+nexp+1), negligible accuracy degradation

can be achieved without time-consuming retraining.

Appendix B. Layer-wise Bit-width

The bit-with for each layer of the reported ResNet-50

and MobileNet-V2 (in Table 2) models encoded with AFP

can be found in Fig.9.Above the abscissa (Fig.9) is the bit-

width of each layer of the weights. The bit width is com-

posed of three parts: sign bit, exponent part, and mantissa

part. Meanwhile, below the abscissa (Fig.9) is the bit-width

distribution of activations for each layer, composed of the

exponent part and mantissa part. Because, after the ReLu

activation function, the activations are all greater than 0.

For the activations, our AFP allocates more bit-width for

the exponent part since the activations always have a greater

dynamic range.

8

6

4

2

0

2

4

6

8

#weight bit (Sign) #weight bit (Exponent) #weight bit (Mantissa) #activation bit (Exponent) #activation bit (Mantissa)

#
b

it layer

6

4

2

0

2

4

6

#weight bit (Sign) #weight bit (Exponent) #weight bit (Mantissa) #activation bit (Exponent) #activation bit (Mantissa)

#
b

it layer

(a) Layer-wise bit-width of AFP encoded MobileNet-v2

(b) Layer-wise bit-width of AFP encoded ResNet-50

With W5.7-A5.7: Acc. 71.59 (0.29 acc. loss)

With W4.7-A4.8: Acc. 76.09 (0.04 acc. loss)

Activations

Weights

Activations

Weights

Figure 9: On ImageNet dataset, the layer-wise bit-width of AFP encoded ResNet-50 and MobileNet-v2 model.

Appendix C. Quantization Process

Quantizing the network means converting it to use re-

duced bit-width representations for weights and/or activa-

tions. This saves model size and allows higher throughput

operations to be used on hardware platforms. For example,

INT8 quantization, when converting from floating-point to

integer values, has a quantization process that multiplies the

floating-point value by some scaling factor and then rounds

the result to an integer. Different quantization methods dif-

fer in the way they determine the scaling factors. On the

other hand, for weights, which are known during the infer-

ence, they are converted in advance and stored in the target

format (e.g., INT8).

Fig. 10(a) depicts the dynamic quantization process.

The scaling factor for activation is determined dynamically

based on the range of data observed on the fly.

Fig. 10(b) depicts the static quantization process. Cali-

bration is performed on a representative data set to deter-

mine the best quantization parameters for the activation.

Compared to dynamic quantization, the running process of

calculating the scaling factor (specifically, finding the maxi-

mum and minimum values and then performing the division

operation) is avoided, and no dynamic adjustment of the

parameters is required, saving a significant computational

overhead.

Fig. 10(c) depicts the process of our proposed AFP quan-

tization, where we simplify the quantization and MAC op-

eration.Based on our AFP data format, the quantization is

implemented by performing shift and logic operations, and

the multiplication operation of MACs is implemented by

adding exponents, which reduces the power during the in-

ference process.

Appendix D. Compare with POSIT format

The posit format is proposed in an attempt to achieve

the same representation as FP32. As shown in Fig. 11, the

posit format consists of four parts: the sign bit, the regime

bits, the exponent bits, and the fraction bits. The representa-

Wi
qWiQuantizer

(e.g. INT8)

Ai qA iQuantizer

(e.g. INT8)
Ai+1 De-

Quantization

Quantizer

(AFP)

+Ai
Quantizer

(AFP)

Simplified

Quantization

OPs on exponent

OPs on value

Accumulation

(C) AFP Quantization Process with Calibration

(a) General Quantization Process

qA
i

Wi
qWi

Ai+1
q

Ai+1
q

Quantization

INT32 FP32 INT8

Wi
qWiQuantizer

(e.g. INT8)

Ai qA iQuantizer

(e.g. INT8)
Ai+1

OPs on value

Accumulation

(b) Quantization Process with Calibration

Ai+1
qQuantization

INT32 INT8

L

<<

<< L

<<

L

Addition

Multiplication

Division

Shift

Logical
Operation

AFP-N AFP-N

Figure 10: The process of the quantization.

signPOSIT

AFP sign

0 1 X 0 0 1 1 0 1 1 0 0

1 0 1 0 0 1 0

Exponent bitsRegime bits Fraction bits

Exponent bits Mantissa bits

Figure 11: Comparison numeric format with POSIT and AFP.

tion range of posit is adjusted by the regime bits, but its bit-

width is limited by the extra regime bits, which cannot be

too small. Besides, each bit in the regime bits contains three

possibilities: ‘0’, ‘1’ and ‘x’, where ‘x’ means don’t care.

This makes it unfriendly for existing hardware platforms

because of the many extra logical judgments. Compared

to POSIT, our scheme is a variant of conventional floating-

point presentation, which includes only sign bits, exponent

bits, and mantissa bits. Our AFP encode the DNN param-

eters in a more hardware-friendly and efficient manner to

reduce the overhead of quantization and MAC operations

during the inference.

