
Supplementary Material for
Infinite Nature: Perpetual View Generation of

Natural Scenes from a Single Image

Figure 1. Infinite Nature Demo. We built a lightweight demo interface so a user can run Infinite Nature and control the camera trajectory.
In addition, the demo can take any uploaded image, and the system will automatically run MiDaS to generate an initial depth map, then
allow the user hit “play” to navigate through the generated world and click to turn the camera towards the cursor. The demo runs at several
frames per second using a free Google Colab GPU-enabled backend. Please see our video for the full effect of generating an interactive
scene flythrough.

1. Implementation Details

This section contains additional implementation details
for our system, including data generation, network architec-
ture, and inference procedure.

1.1. ACID Collection and Processing

To create the ACID dataset, we began by identifying over
150 proper nouns related to coastline and island locations
such as Big Sur, Half Moon Bay, Moloka’i, Shi Shi Beach,
Waimea bay, etc. We combined each proper noun with a set
of keywords ({aerial, drone, dji, andmavic}) and used these
combinations of keywords to perform YouTube video search
queries. We combined the top 10 video IDs from each query
to form a set of candidate videos for our dataset.

We process all the videos through a SLAM and SfM
pipeline as in Zhou et al. [9]. For each video, this process
yields a set of camera trajectories, each containing cam-
era poses corresponding to individual video frames. The
pipeline also produces a set of 3D keypoints. We manually
identify and remove videos that feature a static camera or are
not aerial, as well as videos that feature a large number of
people or man-made structures. In an effort to limit the po-

tential privacy concerns of our work, we also discard frames
that feature people. In particular, we run the state of the art
object detection network [6] to identify any humans present
in the frames. If detected humans occupy more than 10%
of a given frame, we discard that frame. The above filtering
steps are applied in order to identify high-quality video se-
quences for training with limited privacy implications, and
the remaining videos form our dataset.

Many videos, especially those that feature drone footage,
are shot with cinematic horizontal borders, achieving a letter-
box effect. We pre-process every frame to remove detected
letterboxes and adjust the camera intrinsics accordingly to
reflect this crop operation.

For the remaining sequences, we run the MiDaS sys-
tem [4] on every frame to estimate dense disparity (inverse
depth). MiDaS predicts disparity only up to an unknown
scale and shift, so for each frame we use the 3D keypoints
produced by running SfM to compute scale and shift pa-
rameters that best fit the MiDaS disparity values to the 3D
keypoints visible in that frame. This results in disparity im-
ages that better align with the SfM camera trajectories dur-
ing training. More specifically, the scale a and shift b are



Figure 2. Scaled MiDaS vs original MiDaS. We scale the MiDaS
disparity maps to be consistent with the camera poses estimated
by SfM during training. At test-time our approach only requires
a single image with disparity. Here we show results of FID-50
long generation using the original MiDaS output vs the scaled
MiDaS. Despite being only trained on scaled disparity, our model
still performs competitively with (unscaled) MiDaS as its input.

calculated via least-squares as:

argmin
a,b

∑
(x,y,z)∈K

(
aD̂xyz + b− z−1

)2
(1)

where K is the set of visible 3D keypoints from the local
frame’s camera viewpoint, D̂ is the disparity map predicted
by MiDaS for that frame, and D̂xyz is the disparity value
sampled from that map at texture coordinates corresponding
to the projection of the point (x, y, z) according to the cam-
era intrinsics. The disparity map D we use during training
and rendering is then D = aD̂ + b.

1.2. Inference without Disparity Scaling

Scaling and shifting the disparity as described above re-
quires a sparse point cloud, which is generated from SfM
and in turn requires video or multi-view imagery. At test-
time, however, we assume only a single view is available.
Fortunately, this is not a problem in practice, as scaling and
shifting the disparity is only necessary if we seek to compare
generated frames at target poses against ground truth. If we
just want to generate sequences, we can equally well use
the original MiDaS disparity predictions. Fig. 2 compares
long generation using scaled and original MiDaS outputs,
and shows that using original MiDaS outputs has a negligi-
ble effect on the FID scores. Fig. 3 shows an example of a
long sequence generated with the unscaled MiDaS predic-
tion from a photo taken on a smartphone, demonstrating that

our framework runs well on a single test image using the
original MiDaS disparity.

1.3. Aligning Camera Speed

The speed of camera motion varies widely in our col-
lected videos, so we normalize the amount of motion present
in training image sequences by computing a proxy for cam-
era speed. We use the translation magnitude of the estimated
camera poses between frames after scale-normalizing the
video as in Zhou et al. [9] to determine a range of rates at
which each sequence can be subsampled in order to obtain
a camera speed within a desired target range. We randomly
select frame rates within this range to subsample videos. We
picked a target speed range for training sequences that varies
by up to 30% and, on average, leaves 90% of an image’s
content visible in the next sampled frame.

1.4. Network Architecture

We use Spatially Adaptive Normalization (SPADE) of
Park et al. [3] as the basis for our refinement network. The
generator consists of two parts, a variational image encoder
and a SPADE generator. The variational image encoder
maps a given image to the parameters of a multivariate
Gaussian that represents its feature. We can use this new
distribution to sample GAN noise used by the SPADE gen-
erator. We use the initial RGBD frame of a sequence as input
to the encoder to obtain this distribution before repeatedly
sampling from it (or using its mean at test-time) at every
step of refinement.

Our SPADE generator is identical to the original SPADE
architecture, except that the input has only 5 channels cor-
responding to RGB texture, disparity, and a mask channel
indicating missing regions.

We also considered a U-net [5]–based approach by using
the generator implementation of Pix2Pix [2], but found that
such an approach struggles to achieve good results, taking
longer to converge and in many cases, completely failing
when evaluating beyond the initial five steps.

As our discriminator, we use the Pix2PixHD [7] multi-
scale discriminator with two scales over generated RGBD
frames. To make efficient use of memory, we run the dis-
criminator on random crops of pixels and random generated
frames over time.

1.5. Loss Weights

We used a subset of our training set to sweep over check-
points and hyperparameter configurations. For our loss,
we used λreconst = 2, λperceptual = 0.01, λadversarial = 1,
λKLD = 0.05, λfeat matching = 10.

1.6. Data Source for Qualitative Illustrations

Note that for license reasons, we do not show generated
qualitative figures and results on ACID. Instead, we col-



Input

10 20 30 40

50 60 70 80

Figure 3. Generation from smartphone photo. Our perpetual view generation applied to a photo captured by the authors on a smartphone.
We use MiDaS for the initial disparity, and assume a field of view of 90◦.

lect input images with open source licenses from Pexels [1]
and show the corresponding qualitative results in the paper
and the supplementary video. The quantitative results are
computed on the ACID test set.

1.7. Auto-pilot View Control

We use an auto-pilot view control algorithm when gen-
erating long sequences from a single input RGB-D image.
This algorithm must generate the camera trajectory in tan-
dem with the image generation, so that it can avoid crash-
ing into the ground or obstacles in the scene. Our basic
approach works as follows: at each step we take the current
disparity image and categorize all points with disparity be-
low a certain threshold as sky and all points with disparity
above a second, higher threshold as near. (In our experi-
ments these thresholds are set to 0.05 and 0.5.) Then we
apply three simple heuristics for view-control: (1) look up
or down so that a given percentage (typically 30%) of the
image is sky, (2) look left or right, towards whichever side
has more sky, (3) If more than 20% of the image is near,
move up (and if less, down), otherwise move towards a
horizontally-centered point 30% of the way from the top of
the image. These heuristics determine a (camera-relative)
target look direction and target movement direction. To en-
sure smooth camera movement, we interpolate the actual
look and movement directions only a small fraction (0.05)
of the way to the target directions at each frame. The next
camera pose is then produced by moving a set distance in
the move direction while looking in the look direction. To
generate a wider variety of camera trajectories (as for ex-
ample in Section 3.4), or to allow user control, we can add
an offset to the target look direction that varies over time:
a horizontal sinusoidal variation in the look direction, for
example, generates a meandering trajectory.

This approach generates somewhat reasonable trajecto-
ries, but an exciting future direction would be to train a
model that learns how to choose each successive camera
pose, using the camera poses in our training data.

We use this auto-pilot algorithm to seamlessly integrate
user control and obstacle avoidance in our demo interface

which can be seen in Fig. 1.

1.8. Additional Frame Interpolation

For the purposes of presenting a very smooth and cin-
ematic video with a high frame rate, we can additionally
interpolate between frames generated by our model. Since
our system produces not just RGB images but also disparity,
and since we have camera poses for each frame, we can use
this information to aid the interpolation. For each pair of
frames (Pt, It, Dt) and (Pt+1, It+1, Dt+1) we proceed as
follows:

First, we create additional camera poses (as many as
desired) by linearly interpolating position and look-direction
between Pt and Pt+1. Then, for each new pose P a fraction
λ of the way between Pt and Pt+1, we use the differentiable
renderer R to rerender It and It+1 from that viewpoint, and
blend between the two resulting images:

I ′t = R(It, Dt, Pt, P ),

I ′t+1 = R(It+1, Dt+1, Pt+1, P ),

I = (1− λ)I ′t + λI ′t+1,

(2)

Note: we apply this interpolation to the long trajectory se-
quences in the supplementary video only, adding four new
frames between each pair in the sequence. However, all
short-to-mid range comparisons and all figures and metrics
in the paper are computed on raw outputs without any inter-
polation.

1.9. Aerial Coastline Imagery Dataset

Our ACID dataset is available from our project page
at https://infinite-nature.github.io, in the same format as
RealEstate10K[9]). For each video we identified as aerial
footage of nature scenes, we identified multiple frames for
which we compute structure-from-motion poses and intrin-
sics within a globally consistent system. We divide ACID
into train and test splits.

To get test sequences used during evaluation, we apply
the same motion-based frame subsampling described in Sec-
tion 1.3 to match the distribution seen during training for all

https://infinite-nature.github.io/


Ours
no-repeatSynSin SynSin-Iter3D Photos OursMPI MPI-IterSVG-LP

t = 5

Input

10

15

25

MPI-
Repeat

SynSin-
Repeat

t = 5

Input

10

15

25

Figure 4. Additional Qualitative Comparisons. As in Figure 6 in the main paper, we show more qualitative view synthesis results on
various baselines. Notice how other methods produce artifacts like stretched pixels (3D Photos, MPI), or incomplete outpainting (3D Photos,
SynSin, Ours no-repeat) or fail to completely move the camera (SVG-LP). Further iter and repeat variants do not improve results. Our
approach generates realistic looking images of zoomed in views that involves adding content and super resolving stretched pixels.

Input

50 100 150 200 250

300 350 400 450 500

Figure 5. Long Generation with Disparity. We show generation of a long sequence with its corresponding disparity output. Our render-
refine-repeat approach enables refinement of both geometry and RGB textures.



view synthesis approaches. Further we constrain test items
to only include forward motion which is defined as trajec-
tories that stay within a 90◦ frontal cone of the first frame.
This was done to establish a fair setting with existing view
synthesis methods which do not incorporate generative as-
pects. These same test items were used in the 50-frame FID
experiments by repeatedly extrapolating the last two known
poses to generate new poses. For the 500-generation FID,
we compute future poses using the auto-pilot control de-
scribed in Section 1.7. To get “real" inception statistics to
compare with, we use images from ACID.

2. Experimental implementation

2.1. SynSin training

We first trained Synsin [8] on our nature dataset with the
default training settings (i.e. the presets used for the KITTI
model). ==We then modified the default settings by chang-
ing the camera stride in order to train Synsin to perform bet-
ter for the task of longer-range view synthesis. Specifically,
we employ the same motion-based sampling for selecting
pairs of images as described in Section 1.3. However, here
we increase the upper end of the desired motion range by
a factor of 5, which allow the network to train with longer
camera strides. This obtains a better performance than the
default setting, and we use this model for all Synsin evalua-
tions. We found no improvement going beyond 5× camera
motion range. We also implemented an exhaustive search
for desirable image pairs within a sequence to maximize the
training data.

We also experimented with SynSin-iter to synthesize long
videos by applying the aforementioned trained SynSin in
an auto-regressive fashion at test time. But this performed
worse than the direct long-range synthesis.

In addition to this, we also consider the repeat variant.
SynSin-repeat was implemented using a similar training
setup, however instead we also train SynSin to take its own
output and produce the next view for T = 5 steps. Due to
memory and engineering constraints, we are unable to fit
SynSin-repeat with the original parameters into memory, so
we did our best by by reducing the batch size while keep-
ing as faithful to the original implementation. While this
does not indicate SynSin fails at perpetual view generation,
it does suggest that certain approaches are better suited to
solve this problem.

3. Additional Analysis and Results

This section contains additional results and analysis to
better understand Infinite Nature’s behavior. In Fig. 4, we
show additional view synthesis results given an input image
across various baselines.

Figure 6. Geometric Grounding Ablation. Geometric grounding
is used to explicitly ensure disparities produced by the refinement
network match the geometry given by its input. We find this im-
portant as otherwise subtle drift can cause the generated results to
diverge quickly as visible in Fig. 7.

3.1. Limitations

As discussed in the main paper, our approach is essen-
tially a memory-less Markov process that does not guarantee
global consistency across multiple iterations. This manifests
in two ways: First on the geometry, i.e. when you look back,
there is no guarantee that the same geometric structure that
was observed in the past will be there. Second, there is also
no global consistency enforced on the appearance—–the ap-
pearance of the scene may change in short range, such as
sunny coastline turning into a cloudy coastline after several
iterations. Similarly, after hundreds of steps, two different
input images may end up in a scene that has similar stylistic
appearance, although never exactly the same set of frames.
Adding global memory to a system like ours and ensuring
more control over what will happen in the long range syn-
thesis is an exciting future direction.

3.2. Disparity Map

In addition to showing the RGB texture, we can also vi-
sualize the refined disparity to show the geometry. In Fig. 5,
we show the long generation as well as its visualized dis-
parity map in an unnormalized color scheme. Note that the
disparity maps look plausible as well because we train our
discriminator over RGB and disparity concatenated. Please
also see our results in the supplementary video.

3.3. Effect of Disabling Geometric Grounding

We use geometric grounding as a technique to avoid drift.
In particular we found that without this grounding, over a



w/ Geometric Grounding

w/o Geometric Grounding

! "# #! $# %!!

%"# %#!

! "# #! $# %!!

%"# %#! %$# "!! ""#

Figure 7. Geometric Grounding Ablation. An example of running our pretrained model on the task of long trajectory generation but
without using geometric grounding. Disparity maps are shown using an unnormalized color scale. Athough the output begins plausibly, by
the 150th frame the disparity map has drifted very far away, and subsequently the RGB output drifts after the 175th frame.

time period of many frames the render-refine-repeat loop
gradually pushes disparity to very small (i.e. distant) values.
Fig. 7 shows an example of this drifting disparity: the se-
quence begins plausibly but before frame 150 is reached, the
disparity (here shown unnormalized) has become very small.
It is notable that once this happens the RGB images then
begin to deteriorate, drifting further away from the space
of plausible scenes. Note that this is a test-time difference
only: the results in Fig. 7 were generated using the same
model checkpoint as our other results, but with geometric
grounding disabled at test time. We show FID-50 results to
quantitatively measure the impact of drifting in Fig. 6.

3.4. Results under Various Camera Motions

In addition to the demo, we also provide a quantitative
experiment to measure how the model’s quality changes
with different kinds of camera motion over long trajectories.
As described in Section 1.7, our auto-pilot algorithm can be
steered by adding an offset to the target look direction. We
add a horizontal offset which varies sinusoidally, causing
the camera to turn alternately left and right every 50 frames.
Fig. 8 compares the FID-50 scores of sequences generated
where the relative magnitude of this offset is 0.0 (no offset),
0.5 (gentle turns), and 1.0 (stronger turns), and visualizes
the resulting camera trajectories, viewed from above. This
experiment shows that our method is resilient to different
turning camera motions, with FID-50 scores that are compa-

rable on long generation.

3.5. Generating Forward-Backwards Sequences

Because the Render-Refine-Repeat framework uses a
memory-less representation to generate sequences, the ap-
pearance of content is not maintained across iterations. As
a consequence, pixel content seen in one view is not guar-
anteed to be preserved later when seen again, particularly if
it goes out of frame. We can observe such inconsistency by
synthesizing forward camera motion followed by the same
motion backwards (a palindromic camera trajectory), ending
at the initial pose. While generating the forward sequence
of frames, some of the content in the original input image
will leave the field of view. Then, when synthesizing the
backward motion, the model must regenerate this forgotten
content anew, resulting in pixels that do not match the orig-
inal input. Fig. 9 shows various input scenes generated for
different lengths of forward-backward motion. The further
the camera moves before returning to the initial position, the
more content will leave the field of view, and so we find that
that longer the palindromic sequence, the more the image
generated upon returning to the initial pose will differ from
the original input image.



Forward Motion Gentle Turns Strong Turns

Figure 8. FID with different camera motion. We consider different types of camera motion generated by our auto-pilot algorithm with
different parameters and its effect on generated quality. Right: Top-down view of three variations of camera motion that add different
amounts of additional turning to the auto-pilot algorithm. Left: Even with strongly turning camera motion, our auto-pilot algorithm is able
to generate sequences whose quality is only slightly worse than our full model evaluated only on forward translations. The unlabeled points
refer to reported baselines on FID-50 from the main paper. See Section 3.4.

Input (t=0) 0 → 5 0 → 10 0 → 15

0 → 5 → 0 0 → 10 → 0 0 → 15 → 0

Sample Caption:
Here we show infinite nature generated for palindromic 
sequences of poses. Because our model uses a stateless 
representation, the forward-backward motion requires 
the model to hallucinate content, resulting in a generated 
image that does not match the original input. 

0 → 15 → 0

0 → 150 → 10

0 → 10 → 0

Input (t=0) 0 → 5

0 → 5 → 0

Figure 9. Palindromic Poses. Here we show Infinite Nature generated on palindromic sequences of poses of different lengths. Because our
model uses a memory-less representation, the forward-backward motion requires the model to hallucinate content it has previously seen but
which has gone out frame or been occluded, resulting in a generated image that does not match the original input.



References
[1] Pexels. Pexels provides high quality and completely free stock

photos licensed under the Creative Commons Zero (CC0) li-
cense. All photos are tagged, searchable and easy to discover .
3

[2] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. CVPR, 2017. 2

[3] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive normal-
ization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019. 2

[4] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler,
and Vladlen Koltun. Towards robust monocular depth estima-
tion: Mixing datasets for zero-shot cross-dataset transfer. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2020. 1

[5] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In Medical
Image Computing and Computer-Assisted Intervention (MIC-
CAI), volume 9351 of LNCS, pages 234–241. Springer, 2015.
(available on arXiv:1505.04597 [cs.CV]). 2

[6] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet:
Scalable and efficient object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10781–10790, 2020. 1

[7] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018. 2

[8] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. SynSin: End-to-end view synthesis from a single
image. In CVPR, 2020. 5

[9] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and
Noah Snavely. Stereo magnification: Learning view synthesis
using multiplane images. ACM Trans. Graph., 37(4):65:1–
65:12, 2018. 1, 2, 3


