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Abstract

Detailed derivations and experiment settings are provided
in this supplementary material. In Sec. 1, the derivation
of the EM algorithm is presented. In Sec. 2, we show the
derivation of the outlier weight. In Sec. 3, concepts and
definitions about Lie groups and Lie algebra are briefly re-
viewed. Then, the derivation of the gradient and the Hessian
matrix are discussed. The update of the covariance multi-
plier σ2 is also derived in this section. In Sec. 4, detailed
experiment settings are given. Finally, in Sec. 5, we provide
a visualization of the point-to-plane penalization coefficient
α on a point cloud data and more insights on the robust-
ness of the method. The source code is available at https:
//github.com/ChirikjianLab/LSG-CPD.git.

1. Derivation of EM

Recall the negative log-likelihood function in Sec. 3.1 of
the paper. The negative log-likelihood of the transformed
observations g(xn) is:

L(g, σ2) =−
N∑

n=1

log p(g(xn)))

=−
N∑

n=1

log

(
wnpo

+ (1− wn)

M∑
m=1

π(m)p(g(xn)|m)

)
(1)

Because of the summation inside the logarithm, it is in-
tractable to solve this MLE problem directly. Therefore,
the EM algorithm [3, 6] is applied. In the EM frame-
work, we treat the correspondence between the m-th mix-
ture component and the observation xn as a latent vari-
able zmn ∈ {0, 1}. Z is the set containing zmn where
m = 1, 2, . . . ,M + 1 and n = 1, 2, . . . , N . zmn = 1 if
xn corresponds to the m-th mixture component; zmn = 0 if
otherwise. Note that m = M + 1 indicates the uniformly
distributed outlier component. The complete negative log-
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likelihood function Lc is:

Lc(g, σ
2,Z) =− log

N∏
n=1

(
(wnpo)

z(M+1)n

M∏
m=1

[(1− wn)π(m)p(g(xn)|m)]zmn

)

=−
N∑

n=1

(
z(M+1)n log(wnpo)+

M∑
m=1

zmn log[(1− wn)π(m)p(g(xn)|m)]

)
(2)

Ignoring terms independent of g and σ2, Eq. 2 becomes:

L′
c(g, σ

2,Z) = −
N∑

n=1

M∑
m=1

zmn log (p(g(xn)|m)) (3)

The latent variables zmn cannot be observed directly.
Thus, it is replaced with its conditional expectation given
the transformation gold obtained in the last iteration, i.e.,
E(zmn|gold(xn)). According to the Bayes’ rule, the pos-
terior correspondence probability is:

P (zmn =1|gold(xn)) =
P (zmn = 1)p(gold(xn)|zmn=1)

p(gold(xn))

=
(1− wn)π(m)p(gold(xn|m))

wnpo + (1− wn)
∑

m π(m)p(gold(xn)|m)
(4)

Subsequently, the conditional expectation can be computed:
E(zmn|gold(xn)) = 1 ·P (zmn = 1|gold(xn))+0 ·P (zmn =
0|gold(xn)) = P (zmn = 1|gold(xn)). And P (zmn =
1|gold(xn)) is Pmn which is computed via Eq. 5 of the paper
in the E step. Substituting zmn in Eq. 3 with its conditional
expectation E(zmn|gold(xn)), we obtain the objective func-
tion:

Q =−
N∑

n=1

M∑
m=1

E(zmn|gold(xn)) log (p(g(xn)|m))

=−
N∑

n=1

M∑
m=1

Pmn(log(cm)− 1

2
∥g(xn)− ym∥2

Σ−1
m
)

(5)
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where cm is the normalizing constant and Σm is the covari-
ance matrix:

cm = (2πσ2)−
3
2 (αm + 1)

1
2

Σ−1
m =

1

σ2
(αmnmnT

m + I)
(6)

Ignoring terms independent of g and σ2, the objective func-
tion becomes:

Q =
1

2

N∑
n=1

M∑
m=1

Pmn(3 log(σ
2) + ∥g(xn)− ym∥2

Σ−1
m
) (7)

In the M step, we update g and σ2 to minimize Q. The algo-
rithm iterates between the E and M step until convergence.

2. Derivation of the Outlier Weight
The outlier component makes CPD [11] and FilterReg [7]

robust to outliers (source points with no correspondence to
any target points). The role of the outlier weight w0 is similar
to the trimming threshold in TrICP [4]. It makes the update
of g in the M step primarily focus on points with strong cor-
respondence. On the one hand, the larger w0 is, the less sen-
sitive the algorithm is to wrong correspondence; on the other
hand, as w0 → 1, information provided by correct correspon-
dences of the inliers will also be “trimmed” out, resulting in
low convergence rate or getting stuck at a local minimum.
Therefore, it is important to find a proper w0 which is large
enough to ensure robustness while not too large such that the
inliers are submerged.

Recall Eq. 7 in the paper and follow the definition of zmn

in the above section. Given a guess of the outlier ratio η, our
goal is to estimate the upper bound of the baseline uniform
outlier weight w0 from a posterior prospective. The number
of outliers is defined as:

Noutlier =

N∑
n=1

z(M+1)n (8)

z(M+1)n is a latent random variable. The posterior probabil-
ity of z(M+1)n can be calculated given the transformation g
via the Bayes’ rule. Similar to the procedure of E step:

P (z(M+1)n = 1|g(xn)) =
w0po

w0po + (1− w0)
∑

m π(m)p(gold(xn)|m)

(9)

w0 is the baseline outlier weights to be estimated. Therefore,
the expectation of the number of outliers given g becomes:

E(Noutlier|g(xn)) =

N∑
n=1

1 · P (z(M+1)n = 1|g(xn)) (10)

If w0 is chosen properly, E(Noutlier|g∗(xn)) should equal
to ηN , where g∗ is the true transformation that aligns the
point clouds. However, g∗ is not available a priori. Thus, w0

cannot be solved from this relationship directly. But a proper

choice of w0 can be bounded by setting p(gold(xn)|m) equal
to its peak density cm:

ηN = E(Noutlier|g∗(xn))

≥
N∑

n=1

(
w0po

w0po + (1− w0)
∑

m π(m)cm

) (11)

cm is also the normalizing constant defined in Eq. 2 in the
paper. Its value is given in Eq. 6. Rearranging terms and
substituting po with 1/V , we get:

w0 ≤
ηV

∑
m π(m)cm

(1− η) + ηV
∑

m π(m)cm
(12)

That is, from a probabilistic prospective, regardless of the
true transformation g∗, if w0 is chosen larger than this upper
bound, it is guaranteed that more points are considered as
outliers than the truth. Therefore, we choose w0 to be this
upper bound to strike a balance.

3. Optimization on Matrix Lie Group
3.1. Mathematical Preliminaries

In this section, we show the detailed definitions and
derivations in Sec. 3.5 of the paper. The 3-d rigid transforma-
tion g = (R, t) forms a a group called the special Euclidean
group SE(3). The homogeneous form of g and point x are
defined respectively as:

g̃ =

(
R t
0T 1

)
x̃ =

(
x
1

)
(13)

i.e., group elements are matrices and the group operation is
matrix multiplication. The image of a point x transformed
by g is g̃x̃. SE(3) is a matrix Lie group. The basis elements
of the corresponding Lie algebra se(3) are:

E1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 E2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0



E3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 E4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



E5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 E6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0



(14)

For any X ∈ se(3), it can always be represented as:

X =

6∑
i=1

xiEi (15)

The matrix exponential maps X to an element in SE(3), i.e.,
exp(X) ∈ SE(3), ∀X ∈ se(3). Two operators ∨ and ∧



are defined to map between X ∈ se(3) and a vector x =
[x1 x2 x3 x4 x5 x6]

T ∈ R6:

X∨ = x x∧ = X (16)

For a function defined on a matrix Lie group f(g̃), the
right derivative on the direction of a basis element Ei is de-
fined as [5]:

Er
i f(g̃)

.
=

d

dt
f(g̃ ◦ exp (tEi))

∣∣∣∣
t=0

(17)

According to the definition of matrix exponential

exp (tEi) = I+ tEi +
1

2!
t2E2

i +
1

3!
t3E3

i + . . . (18)

and thus for i = 1, 2, . . . , 6

d exp (tEi)

dt

∣∣∣∣
t=0

=Ei + tE2
i +

1

2!
t2E3

i + . . .

∣∣∣∣
t=0

=Ei

(19)

The gradient vector ∇f(g̃) and the Hessian matrix H(g̃) of
f(g̃) are defined as:

∇f(g̃) =
(
Er

1f Er
2f . . . Er

6f
)T

(20)

H(g̃) =


Er

1E
r
1f Er

1E
r
2f . . . Er

1E
r
6f

Er
2E

r
1f

. . . . . .
...

...
. . . . . .

...
Er

6E
r
1f . . . . . . Er

6E
r
6f

 (21)

3.2. Closed Form Gradient and Hessian

In the first step of M step, we want to find the optimal g
that minimizes the objective function Eq. 7. Ignoring terms
independent of g in Eq. 7 and substituting terms with their
homogeneous form, it is equivalent to minimize the follow-
ing:

Q(g̃) =

N∑
n=1

M∑
m=1

Pmn(g̃x̃n − ỹm)T Σ̃−1
m (g̃x̃n − ỹm) (22)

where Σ̃−1
m = Σ−1

m ⊕ 0 is the augmented inverse covariance
matrix and ⊕ denotes the direct sum. According to Eq. 17

and Eq. 19, we obtain:

Er
i Q(g̃) =

d

dt
Q(g̃ ◦ exp(tEi))

∣∣∣∣
t=0

=2

N∑
n=1

M∑
m=1

Pmn(g̃ exp (tEi)x̃n − ỹm)T Σ̃−1
m

d

dt

(
g̃ exp (tEi)x̃n − ỹm

)∣∣∣∣
t=0

=2

N∑
n=1

M∑
m=1

Pmn(g̃ exp (tEi)x̃n − ỹm)T Σ̃−1
m

g̃
d

dt

(
exp (tEi)

)
x̃n

∣∣∣∣
t=0

=2

N∑
n=1

M∑
m=1

Pmn(g̃x̃n − ỹm)T Σ̃−1
m g̃Eix̃n

(23)
It is worth noting that

∑M
m=1 PmnΣ̃

−1
m and∑M

m=1 Pmnỹ
T
mΣ̃−1

m can be pre-calculated to speed
up the calculation of the derivatives. Similarly,
Er

i E
r
jQ(g̃) = Er

i (E
r
jQ(g̃)) can be derived in closed

form following this procedure. In practice, in Eq. 12 in the
paper, the second order derivatives can be approximated by
omitting the last term.

3.3. Update of Covariance Multiplier σ2

After g gets updated, σ2 is inferred by setting the corre-
sponding derivative of Eq. 7 to zero. The derivative is:

d

dσ2
Q(σ2) =

d

dσ2

N∑
n=1

M∑
m=1

Pmn

(
3

2
log(σ2)+

1

2σ2
∥g(xn)− ym∥2(αmnmnT

m+I)−1

)
=

N∑
n=1

M∑
m=1

Pmn

(
3

2σ2
−

1

2(σ2)2
∥g(xn)− ym∥2(αmnmnT

m+I)−1

)
(24)

Subsequently, σ2 is updated by:

σ2 =

∑N
n=1

∑M
m=1 Pmn∥g(xn)− ym∥2(αmnmnT

m+I)−1

3
∑N

n=1

∑M
m=1 Pmn

(25)

4. Experiment Details
4.1. Baseline Methods

The source codes of the baseline methods we used for
comparison in the paper are listed here. They are either pro-
vided directly by the author or taken from the popular open
source library with various performance optimization. The
source code of MATrICP [10] and EMPMR [14] in Sec. 4.2
of the paper are provided directly by the authors of the pa-
pers. The rest are listed as follows:



CPD [11]: https://www.mathworks.com/help/
vision/ref/pcregistercpd.html

FilterReg [7]: https://bitbucket.org/
gaowei19951004/poser/src/master/

TrICP/ICP [2, 4]: https://github.com/
ethz-asl/libpointmatcher

ECMPR [9]: https://team.inria.fr/
perception/research/ecmpr/#code

GICP [12]: https://github.com/SMRT-AIST/
fast_gicp

The parameters for running the experiments are either
provided directly by the authors/libraries or well tuned by
ourselves. We are grateful to the authors of the papers and
libraries for providing the code for usage.

4.2. Proposed Method

In this section, we provide the setting of the proposed
method in each experiment. Similar to CPD [11], the ini-
tial value of σ2 is computed autonomously from the data in
all the experiments. In Sec. 4.1 of the paper, η = 0.5 for
the outlier experiment and η = 0.001 for the noise experi-
ment. No artificial outliers are added to the data in the noise
experiment, thus η is set relatively low. η = 0.5 in Sec.
4.2 of the paper. Adjacent scans have relatively low overlap-
ping ratio. Thus, many points from the source set should be
regarded as outliers/missing points due to lack of correspon-
dence, resulting in the choice of a large η. η = 0.07 and
η = 0.05 in Sec. 4.3 and Sec. 4.4 of the paper, respectively.
Adjacent frames in these two datasets are captured relatively
close. The overlapping ratios are higher than that in Sec 4.2
of the paper. Thus, η are set relatively small accordingly. The
outlier weight w0 is computed via the procedure introduced
in Sec. 3.2 of the paper. In all the experiments, λ = 0.2 (Eq.
3 in the paper). αmax = 30 (Eq. 3 in the paper) for all ex-
periments except the outlier and noise experiment in Sec. 4.1
of the paper. αmax = 5 in these two experiments. The data
in these two experiments contains a large amount of artificial
noise and outlier which far exceeds those in data directly ac-
quired from the real world. The normal estimation for many
points will be ineffective. Thus, we set αmax relatively small
to make the maximum weight of the point-to-plane penaliza-
tion relatively small.

4.3. Confidence Filtering in Registration on RGBD
Dataset

Confidence Filtering is only used in the experiment on the
Stanford Lounge Dataset [13] (Sec. 4.3 of the paper). We
use the error model e(x) (Sec. 3.3 of the paper) provided
by [8]. e(x) = e(d(x)), where d(x) denotes the depth of
point x, is a second order polynoimal function of d(x). It
is measured specifically for the sensor used to capture this
dataset [13], i.e., Asus Xtion Pro, via statistical error eval-
uation experiments [8]. It represents the precision* of the
measurement at this point. Precision quantizes the standard

*The definition of precision follows the official definitions of precision
according to ISO 5725-1 [1].

Figure 1. Alpha Visualization. Red indicates large α; blue indicates
small α. The green circle indicates a plane captured far away from
the camera optical center.

deviation of the camera depth measurements. Within the sen-
sor range, e(d(x)) is an increasing function which increases
as d(x) increases. Intuitively, that is the noise of the mea-
surement increases as d((x)) increases. Thus, the confidence
ϕ(x) = emin/e(x) decreases as d(x) increases. As a result,
the points captured far away from the camera optical center
(e.g., points in the green circle of Fig. 1), which contain a lot
of noise, will have small confidence and thus be truncated or
have little contribution to the registration.

5. Additional Experimental Results
In this section, we visualize α on a point cloud from the

Stanford Lounge dataset [13] (Sec 4.3 of the paper). The
visualization is shown in Fig. 1. For the region where the
local surface is flat, α is large. If the local surface is not
flat, e.g., at the intersection between two planes, α is small.
If the measurement is noisy, e.g., the green circle in Fig. 1,
even though the plane is flat in the real world, the noisy mea-
surement makes the point cloud locally non-flat. And the es-
timated surface normal from this region will be ineffective.
α is also small in this case. The GMM components will be
sphere-like. In this way, the robustness of the algorithm is en-
hanced as the registration will not be misled by ineffectively
estimated normals.
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