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1. Introduction

In this supplementary material, we present the details on
the Jacobian derivations necessary for the implementation
of the direct image alignment algorithm with blurry images.
We also include the sample videos of the proposed motion
blur robust VO benchmarking dataset. Additional discus-
sion on the computational complexity as well as experimen-
tal results are also presented.

2. Notations

For the ease of illustration, we define following nota-
tions. We denote scalar with lower case letter (e.g. A); we
denote vector with bold lower case letter (e.g. x); we de-
note matrix with bold upper case letter (e.g. T'); we denote a
point p in coordinate frame F, with p?; the transformation
matrix T2 € SE(3) transforms a 3D point p® in coordinate
frame F, to coordinate frame J;; we further decompose
T with R? € SO(3) and t% € R3, such that

p’ =T, p" =R, p’+t, (1)
where t& and R? € SO(3) represents the translation and

orientation respectively; we use unit quaternion to represent
. . b - b T
the orientation R}, i.e. @ = [¢z ¢y ¢ qu| . where

T represents the transpose operator.

3. Background

Before we proceed, we review several background
knowledge that will be used in the following sections.

Exponential map: the exponential map operator connects
the Lie algebra (e.g. so(3)) to Lie group (e.g. SO(3)). We
can formally define the exponential map as exp : R® —
R3*3 for SO(3). The rotation matrix is parameterized by
unit quaternion representation. If we further denote the tan-

gent vector r = [r, 1y TZ]T € so(3) and use the unit

. T
quaterion @ = [¢» ¢y ¢ qu| to represent the rota-

tion matrix R € SO(3), we can have
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where A\ = Sm(e and 6 = 1,/r2 +r2 + r2 [3]. We there-

fore can derive the Jacobian % € R**3 as follows.
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It can be seen that A = =7, is not well defined if & — 0.
It is special handled by Taylor series expansion as follows
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Since 8 — 0, the corresponding Jacobian is then derived as
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Logarithm map: the logarithm map operator is the inverse
of the exponential map operator. It can be formally defined
as log : R3*3 — R3 for rotation matrix R € SO(3). We
can have the tangent vector r € so(3) if we represent R
with unit quaternion representation q,

Gz
r=1log(q) =A|gq|, (20)
qz

arctan( %

where A = 2 7 )andez

fore can derive the Jacobian g—g € R3*4 as follows:

\/ 4% + q2 + q%. We there-

ory ory ory ory
0qz  Og 0q:  9qu
or ory arZ ory ory

2Ol O T
¢z a(Iy 9q. Oquw
where
ory oA or,, oA
= q.+ A\ = —q 22)
0¢x  0qa dq,  Oqy
ory o\ or, oA\
= _ O r_ OA )
Jdq.  Oq. 4 0¢w  O0qu e (23)
ory  OA ory 0
2L ="y =g, + A (24)
9qr  Oqp " dqy  Oqy "’
or o\ or oA\
2= — ="y, (25)

0q. ~ 0g. 3w 0w

or, 0O or, O\

bo = 5" 50 = 5" (26)
gz = g—qtqz +A g;u = %qz 27)
gq); = 2%92— A o ng = que?_ )\qy (28)
g{i = 2w s A a‘% =2 (29)

arctan( %)

It can be seen that A = 2 is not well defined if
either § — 0 or ¢,, — 0. They are thus special handled as
follows.

e If # — 0, we can approximate A with A = ql — ggj .
The correspondng Jacobian can be obtained as
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e If gy — O and g, > 0, we can have A = 7. The
corresponding Jacobian can be obtained as
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e If g» — O and q, < 0, we can have A = —7. The
corresponding Jacobian can be obtained as
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Quaternion multiplication:
. L T _
nions, ie. G = [¢x0 @0 ¢:0 Qquo| and G =

T .
[%;1 qy1  Gz1 qw1] , we can compute their product as

Given two unit quater-

a=Gq ®aq =Q(q) @ = Q(a) - G, (36)
where ® is the product operator for quaternions, and Q(qo)
and Q(q) can be defined as
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The Jacobian can be derived as
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Inverse of unit quaternion: Given a unit quaternion, i.e.

_ T . . L .
q= [qw Qy - qw} , its inverse is simply the conju-
1

gate q~ and can be defined as
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-1 0 0 0
oq1 0o -1 0 O
2g o 0o -1 0 @
0 0 0 1

4. Motion trajectory modeling

We model the virtual camera pose at time ¢ € [0, 7] as

, t ,
Ty =Ty -exp(= - log((T§) ™' - TY)),  (42)
T

where 7 is the exposure time, Ty € SE(3) and TY €
SE(3) are the poses corresponding to virtual sharp images
captured at the beginning and end of the exposure time re-
spectively. For efficiency, we decompose Eq. (42) as
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a/ = ay ®exp(~-log((ag) ' @ay)), 43

t
6 = b+ (6 — ), (44)

where TY = [RY|t¥] € SE(3), RY € SO(3) and
t¥ € R3. We represent the rotation matrix R¥ with unit
quaternion q¥.

Local parameterization of rotation: For the real imple-
mentation, we use the local parameterization for the update

of the rotation. The plus operation for unit quaternion q is
defined as

q =q®Aq, (45)

where Aq = exp(Ar), Ar = [Ar, Ar, A’I‘Z}T and
Ar, — 0, Ary — 0, Ar, — 0. The Jacobian with respect

to Ar can thus be derived as
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Jacobian related to translation: We can simplify Eq. (44)
as
T—1
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The Jacobians, i.e. 5 € R3%3 and St € R3*3 can thus
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be derived as

! =t 9 0
oty |7

L=10 = 0], (43)
otg 0 0 =t

L0 0
w T
AT (49)
N

Jacobian related to rotation: We decompose Eq. (43) as

a = (af) ' @ay, (50)

r= " log(a?), (s51)
a; = exp(r), (52)
a =af ®q;. (53)

We can rewrite both Eq. (50) and Eq. (53) as
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The Jacobian % € R**4 can thus be derived as
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Similarly for the Jacobian € R***4 we can derive it as
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Note that both 88% and afgu are the Jacobians related to the
exponential mapping and logarithm mapping respectively.
8 (El(";} ) —1
oqy

is the Jacobian related to the inverse of quaternion.



Figure 1. Geometric relationship between x € R? (i.e. the red
pixel) of the virtual sharp image I; and x_ir € R? (i.e. the black

pixel) of the reference image I ef.

The Jacobians with respect to the local parameterization
can then be computed as
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S. Details on the pixel point transfer

In this section, we derive the geometric relationship be-
tween the reference keyframe and the i*" virtual sharp im-
age, which we denote the corresponding pose with T;ef €
SE(3). We simplify Figure 3 in the main text (i.e. left fig-
ure of Fig. 1) with its 2D top-down view (i.e. right figure of
Fig. 1).

We denote the translation vector pzef of T:ef with
[P Py p=]T and represent the rotation R;ef with unit
quaternion, i.e. @ = ¢z, @y, s Guw] . We denote d as the
depth of the frontal-parallel plane with respect to the ref-
erence key-frame. We can then compute the distance d’
between the camera center of the i‘" virtual camera to the
frontal-parallel plane as

d=d-p,. (61)
The unitary ray of pixel x € R? in the i*" image I; can be
computed by the back-projection function 7—! : R? — R3
as

x
y| =7 (x), (62)
z

where 22 + y? + 22 = 1. We can then compute cosine

function of the angle (i.e. ) between the unitary ray and the

plane normal of the frontal parallel plane as

0
A=cos(f) = R a7 tx)T - |0|,  (63)
1

from which we can further simply it as

A = 22(qo 0=~ Quly) + 2y (G w4y =)+ 2(dh — o —ao+02).-

(64)
The length of the line segment L, which goes through pixel
point x from camera center of the i*” camera and intersects
with the frontal-parallel plane, can then be simply computed
as

:i/ d_pz

A A

The 3D intersection point psq between the line segment L
and the frontal parallel plane can thus be computed as

|L| : (65)

paa = || |y| = — = ly|, (66)
z y4

where the psq is represented in the coordinate frame of
the i*" camera. To compute the corresponding pixel point
X _ir_ in the reference image I...¢, we need transform the 3D

n—1

point psg to the reference camera coordinate frame and then
project it to the image plane. It can be formally defined as

Pha =T, - pag, (67)
Xz = 7 (P5q); (68)

where p}, is the 3D point p3q represented in the reference
camera, 7 : R® — R? is the camera projection function.

Jacobian derivations: The pose of the it virtual camera,
ie. Tzef, relates to Tgef and T via Eq. (42). To esti-
mate both Tge'f and T7¢/, we need to have the Jacobian of
x_iz_ with respect to T:ef . Since the relationship between
X ir_ and Tfef is complex, as derived above, we use the

Mathematica Symbolic Toolbox' for the ease of Jacobian
derivations. The details are as follows.

a1 = qyT — quz — 42y, (69)
as = qu + qyz — qzy, (70)
Bo = —2(qwq> — Gzay), (71)
B =2(quwqy + ¢:9:),  Bo=2(quw: +¢2qy), (72)
B3 = =2(qus — @), Ba = —2(quly — 424:), (73)
Bs = 2(qu:r + Qsz)a (74)

g = e + qyY + qz2,
a2 = QY — 9z% + q:7,
Qy = quZ + @Y — Qy,

Uhttps://www.wolfram.com/mathematica/
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The Jacobian € R%*3 is related to the camera pro-

Py
jection function. For a pinhole camera model with the in-
trinsic parameters f;, fy, Cx, Cy, it can be derived as

. fT _ fﬂ"pédw
8Xﬁ — p_{idz O (pgd/z)z (85)
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where ps; = [P3d17P3dva3dZ} .

6. Computational complexity

To compensate the effect of motion blur, we need to sam-
ple multiple discrete virtual frames to synthesize the blurry
image (Eq.6 in the main text). The number of discrete
frames should be larger than the blur kernel size. Currently,
we use n = 64 for our experiments. If n = 1, it reduces
to the problem of assuming the images are sharp. The ac-
curacy would thus be affected for motion blurred images.
If we raise n to 2 or higher, the number of pose parame-
ters would not be affected (i.e. 12 variables). However, the
number of pixel transfers would be increased (e.g. doubled
for 2 virtual frames). Larger n thus requires more computa-
tional resources. To further improve the efficiency, we can
dynamically change the number of discrete frames (i.e. we
can use a smaller n for less blurry image and a larger n
for more blurry image). The back-end is the same as the
original DSO [2] and it is running on CPU. Note that the
back-end only relies on the deblurred keyframes when op-
timizing the keyframe poses and structure, thus we can use
the original DSO implementation.

7. Additional experimental results with our
real-world dataset

Table 1 presents additional experimental results with our
real-world dataset. It demonstrates that ORB-SLAM [4]
suffers from significant frame drops if the images are mo-
tion blurred. It is reasonable since ORB-SLAM is a sparse
feature based approach. If the images are severely motion
blurred, the sparse feature detector would have difficulties
to detect enough good features for motion estimation. In
contrast, DSO [2] is more robust to motion blur (i.e. no
frame drops). However, since pairs of motion blurred im-
ages usually violate the photometric-consistency assump-
tion, the accuracy of DSO is degraded. Our proposed mo-
tion blur aware visual odometry (i.e. MBA-VO) models the
motion blur for direct image alignment algorithm, so that
the photometric-consistency assumption would still hold
even the images are motion blurred. It thus achieves bet-
ter accuracy and robustness compared to DSO and ORB-
SLAM.

8. Performance in the absence of motion-blur

To further demonstrate the performance of our proposed
method with images in good quality, we run an experi-
ment comparing the proposed approach with DSO on the
EuRoC dataset [1]. Table 2 demonstrates that MBA-VO
performs slightly worse than DSO on MH_02_easy and
MH_03_medium. However, it performs better than DSO
on MH_01_easy, MH_04_difficult and MH_05_difficult. In
general, we observed similar performance as DSO for good
images. The VICON room sequences in the EuRoC dataset
are very challenging. Both DSO and MBA-VO fail even



ORB-SLAM [4] DSO [2] MBA-VO
ATE (m) FD (%) ATE (m) FD (%) ATE (m) FD (%)

Seq5 0.1931 732 0.3241 0 0.2667 0
Seq6 0.0743 254  0.4968 0 0.3321 0
Seq7 0.1872 479 0.3857 0 0.2718 0
Seq8 0.5861 319 0.7906 0 0.3915 0
Seq9 03791 26.6 0.8538 0 0.2838 0
Seql0 0.1708 33.6  0.4800 0 0.4319 0
Seqll 0.1378  39.1 X X 0.4003 0
Seql2 X X 0.5031 0 0.3632 0
Seql3 X X 0.4501 0 0.3043 0
Seql4 X X X X 0.4516 0
Seql5 X X X X 0.3687 0
Seql6 X X X X 0.3765 0
Seql7 X X X X 0.3299 0

Table 1. The performance of MBA-VO on our real-world dataset.
x denotes the corresponding algorithm fails on that particular se-
quence. It demonstrates that ORB-SLAM suffers from significant
frame drops if the images are motion blurred, although it usually
has more accurate motion estimations. MBA-VO improves the ac-
curacy of DSO, while being robust to motion blur with no frame
drops.

with sharp images (either with very large errors or complete
tracking failure). This might be caused by the lack of good
texture for some of the frames. The sequences also contain
degenerate motions (e.g. close to pure rotation). Without
any relocalization module (e.g. as is used in ORB-SLAM),
it is hard for both DSO and MBA-VO to recover once the
pipeline breaks or drifts significantly.

ORB-SLAM DSO MBA-VO
MH_01_easy 0.030 0.050 0.035
MH_02_easy 0.022 0.077 0.101
MH_03_medium 0.049 0.178 0.239
MH_04_difficult 2472 1.181 0.476
MH_05 _difficult 4.386 1.261 0.265

Table 2. EuRoC dataset: Comparison in terms of ATE RMSE er-
ror metric (m). Note that we did not discard any images (e.g. the
first few shaky images which are used to initialize IMU) from the
EuRoC dataset for our evaluation. Therefore, the resulted accu-
racy for ORB-SLAM and DSO might be a bit different from prior
reported results.

9. Potential integration with IMU measure-
ments

We think the performance would be further improved if
we integrate the measurements from IMU. However, we
generally cannot rely on IMU solely for odometry due to
drift, and it needs to be combined with vision. This means
that we still need to track for blurry images to reduce

drift. Note that IMU measurements can naturally enter our
pipeline by providing initial estimates for the local motion
trajectory, as well as helping the keyframe deblurring. In the
paper, we decided to focus on the pure VO problem first, but
we think the pipeline can be easily extended to VIO in the
future. Another promising future direction would be to also
model rolling shutter effects during the reblurring.
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