
Supplementary Material for
MBA-VO: Motion Blur Aware Visual Odometry

Peidong Liu1 Xingxing Zuo1 Viktor Larsson1 Marc Pollefeys1,2
1Department of Computer Science, ETH Zürich
2Microsoft Mixed Reality and AI Lab, Zürich

1. Introduction

In this supplementary material, we present the details on
the Jacobian derivations necessary for the implementation
of the direct image alignment algorithm with blurry images.
We also include the sample videos of the proposed motion
blur robust VO benchmarking dataset. Additional discus-
sion on the computational complexity as well as experimen-
tal results are also presented.

2. Notations

For the ease of illustration, we define following nota-
tions. We denote scalar with lower case letter (e.g. λ); we
denote vector with bold lower case letter (e.g. x); we de-
note matrix with bold upper case letter (e.g. T); we denote a
point p in coordinate frame Fa with pa; the transformation
matrix Tb

a ∈ SE(3) transforms a 3D point pa in coordinate
frame Fa to coordinate frame Fb; we further decompose
Tb

a with Rb
a ∈ SO(3) and tba ∈ R3, such that

pb = Tb
a · pa = Rb

a · pa + tba, (1)

where tba and Rb
a ∈ SO(3) represents the translation and

orientation respectively; we use unit quaternion to represent
the orientation Rb

a, i.e. q̄b
a =

[
qx qy qz qw

]T
, where

T represents the transpose operator.

3. Background

Before we proceed, we review several background
knowledge that will be used in the following sections.

Exponential map: the exponential map operator connects
the Lie algebra (e.g. so(3)) to Lie group (e.g. SO(3)). We
can formally define the exponential map as exp : R3 →
R3×3 for SO(3). The rotation matrix is parameterized by
unit quaternion representation. If we further denote the tan-
gent vector r =

[
rx ry rz

]T ∈ so(3) and use the unit

quaterion q̄ =
[
qx qy qz qw

]T
to represent the rota-

tion matrix R ∈ SO(3), we can have

q̄ =


qx
qy
qz
qw

 = exp(r) =


λrx
λry
λrz

cos(θ)

 , (2)

where λ = sin(θ)
2θ and θ = 1

2

√
r2x + r2y + r2z [3]. We there-

fore can derive the Jacobian ∂q̄
∂r ∈ R4×3 as follows.

∂q̄

∂r
=


∂qx
∂rx

∂qx
∂ry

∂qx
∂rz

∂qy
∂rx

∂qy
∂ry

∂qy
∂rz

∂qz
∂rx

∂qz
∂ry

∂qz
∂rz

∂qw
∂rx

∂qw
∂ry

∂qw
∂rz

 , (3)

where

∂θ

∂rx
=

rx
2θ

,
∂θ

∂ry
=

ry
2θ

, (4)

∂θ

∂rz
=

rz
2θ

,
∂λ

∂θ
=

cos(θ)− 2λ

2θ
, (5)

∂qx
∂rx

=
∂λ

∂θ

∂θ

∂rx
rx + λ,

∂qx
∂ry

=
∂λ

∂θ

∂θ

∂ry
rx, (6)

∂qx
∂rz

=
∂λ

∂θ

∂θ

∂rz
rx,

∂qy
∂rx

=
∂λ

∂θ

∂θ

∂rx
ry, (7)

∂qy
∂ry

=
∂λ

∂θ

∂θ

∂ry
ry + λ,

∂qy
∂rz

=
∂λ

∂θ

∂θ

∂rz
ry, (8)

∂qz
∂rx

=
∂λ

∂θ

∂θ

∂rx
rz,

∂qz
∂ry

=
∂λ

∂θ

∂θ

∂ry
rz, (9)

∂qz
∂rz

=
∂λ

∂θ

∂θ

∂rz
rz + λ,

∂qw
∂rx

= − sin(θ) · ∂θ

∂rx
, (10)

∂qw
∂ry

= − sin(θ) · ∂θ

∂ry
,

∂qw
∂rz

= − sin(θ) · ∂θ

∂rz
. (11)

It can be seen that λ = sin(θ)
2θ is not well defined if θ → 0.

It is special handled by Taylor series expansion as follows

qx = (
1

2
− 1

12
θ2 +

1

240
θ4)rx, (12)

qy = (
1

2
− 1

12
θ2 +

1

240
θ4)ry, (13)

qz = (
1

2
− 1

12
θ2 +

1

240
θ4)rz. (14)

qw = 1− 1

2
θ2 +

1

24
θ4. (15)

Since θ → 0, the corresponding Jacobian is then derived as

∂qx
∂rx

= 0.5
∂qx
∂ry

= 0
∂qx
∂rz

= 0 (16)

∂qy
∂rx

= 0
∂qy
∂ry

= 0.5
∂qy
∂rz

= 0 (17)

∂qz
∂rx

= 0
∂qz
∂ry

= 0
∂qz
∂rz

= 0.5 (18)

∂qw
∂rx

= 0
∂qw
∂ry

= 0
∂qw
∂rz

= 0 (19)

Logarithm map: the logarithm map operator is the inverse
of the exponential map operator. It can be formally defined
as log : R3×3 → R3 for rotation matrix R ∈ SO(3). We
can have the tangent vector r ∈ so(3) if we represent R
with unit quaternion representation q̄,

r = log(q̄) = λ

qxqy
qz

 , (20)

where λ = 2
arctan(θ

qw
)

θ and θ =
√

q2x + q2y + q2z . We there-

fore can derive the Jacobian ∂r
∂q̄ ∈ R3×4 as follows:

∂r

∂q̄
=


∂rx
∂qx

∂rx
∂qy

∂rx
∂qz

∂rx
∂qw

∂ry
∂qx

∂ry
∂qy

∂ry
∂qz

∂ry
∂qw

∂rz
∂qx

∂rz
∂qy

∂rz
∂qz

∂rz
∂qw

 , (21)

where

∂rx
∂qx

=
∂λ

∂qx
qx + λ

∂rx
∂qy

=
∂λ

∂qy
qx (22)

∂rx
∂qz

=
∂λ

∂qz
qx

∂rx
∂qw

=
∂λ

∂qw
qx (23)

∂ry
∂qx

=
∂λ

∂qx
qy

∂ry
∂qy

=
∂λ

∂qy
qy + λ (24)

∂ry
∂qz

=
∂λ

∂qz
qy

∂ry
∂qw

=
∂λ

∂qw
qy (25)

∂rz
∂qx

=
∂λ

∂qx
qz

∂rz
∂qy

=
∂λ

∂qy
qz (26)

∂rz
∂qz

=
∂λ

∂qz
qz + λ

∂rz
∂qw

=
∂λ

∂qw
qz (27)

∂λ

∂qx
=

2qw − λ

θ2
qx

∂λ

∂qy
=

2qw − λ

θ2
qy (28)

∂λ

∂qz
=

2qw − λ

θ2
qz

∂λ

∂qw
= −2 (29)

It can be seen that λ = 2
arctan(θ

qw
)

θ is not well defined if
either θ → 0 or qw → 0. They are thus special handled as
follows.

• If θ → 0, we can approximate λ with λ = 2
qw

− 2θ2

3q3w
.

The correspondng Jacobian can be obtained as

∂λ

∂qx
= 2

1

qw
− 4qx

3q3w
,

∂λ

∂qy
= 2

1

qw
− 4qy

3q3w
, (30)

∂λ

∂qz
= 2

1

qw
− 4qz

3q3w
,

∂λ

∂qw
= −2

1

q2w
+ 2

θ2

q4w
. (31)

• If qw → 0 and qw > 0, we can have λ = π
θ . The

corresponding Jacobian can be obtained as

∂λ

∂qx
= − λ

θ2
qx,

∂λ

∂qy
= − λ

θ2
qy, (32)

∂λ

∂qz
= − λ

θ2
qz,

∂λ

∂qw
= 0. (33)

• If qw → 0 and qw < 0, we can have λ = −π
θ . The

corresponding Jacobian can be obtained as

∂λ

∂qx
=

λ

θ2
qx,

∂λ

∂qy
=

λ

θ2
qy, (34)

∂λ

∂qz
=

λ

θ2
qz,

∂λ

∂qw
= 0. (35)

Quaternion multiplication: Given two unit quater-
nions, i.e. q̄0 =

[
qx0 qy0 qz0 qw0

]T
and q̄1 =[

qx1 qy1 qz1 qw1

]T
, we can compute their product as

q̄ = q̄0 ⊗ q̄1 = Q(q̄0) · q̄1 = Q̂(q̄1) · q̄0, (36)

where ⊗ is the product operator for quaternions, and Q(q̄0)

and Q̂(q̄1) can be defined as

Q(q̄0) =


qw0 −qz0 qy0 qx0
qz0 qw0 −qx0 qy0
−qy0 qx0 qw0 qz0
−qx0 −qy0 −qz0 qw0

 , (37)

Q̂(q̄1) =


qw1 qz1 −qy1 qx1
−qz1 qw1 qx1 qy1
qy1 −qx1 qw1 qz1
−qx1 −qy1 −qz1 qw1

 . (38)

The Jacobian can be derived as

∂q̄

∂q̄0
= Q̄(q̄1),

∂q̄

∂q̄1
= Q(q̄0). (39)

Inverse of unit quaternion: Given a unit quaternion, i.e.
q̄ =

[
qx qy qz qw

]T
, its inverse is simply the conju-

gate q̄−1 and can be defined as

q̄−1 =


−qx
−qy
−qz
qw

 . (40)

The Jacobian can be derived as

∂q̄−1

∂q̄
=


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (41)

4. Motion trajectory modeling
We model the virtual camera pose at time t ∈ [0, τ] as

Tw
t = Tw

0 · exp(t
τ
· log((Tw

0)
−1 ·Tw

τ)), (42)

where τ is the exposure time, Tw
0 ∈ SE(3) and Tw

τ ∈
SE(3) are the poses corresponding to virtual sharp images
captured at the beginning and end of the exposure time re-
spectively. For efficiency, we decompose Eq. (42) as

q̄w
t = q̄w

0 ⊗ exp(
t

τ
· log((q̄w

0)
−1 ⊗ q̄w

τ)), (43)

twt = tw0 +
t

τ
(twτ − tw0), (44)

where Tw
∗ = [Rw

∗ |tw∗] ∈ SE(3), Rw
∗ ∈ SO(3) and

tw∗ ∈ R3. We represent the rotation matrix Rw
∗ with unit

quaternion q̄w
∗ .

Local parameterization of rotation: For the real imple-
mentation, we use the local parameterization for the update
of the rotation. The plus operation for unit quaternion q̄ is
defined as

q̄′ = q̄⊗∆q̄, (45)

where ∆q̄ = exp(∆r), ∆r =
[
∆rx ∆ry ∆rz

]T
and

∆rx → 0, ∆ry → 0, ∆rz → 0. The Jacobian with respect

to ∆r can thus be derived as

∂q̄′

∂∆r
= Q(q̄) ·


0.5 0 0
0 0.5 0
0 0 0.5
0 0 0

 . (46)

Jacobian related to translation: We can simplify Eq. (44)
as

twt =
τ − t

τ
tw0 +

t

τ
twτ . (47)

The Jacobians, i.e. ∂twt
∂tw0

∈ R3×3 and ∂twt
∂twτ

∈ R3×3 can thus
be derived as

∂twt
∂tw0

=

 τ−t
τ 0 0
0 τ−t

τ 0
0 0 τ−t

τ

 , (48)

∂twt
∂twτ

=

 t
τ 0 0
0 t

τ 0
0 0 t

τ

 . (49)

Jacobian related to rotation: We decompose Eq. (43) as

q̄0
τ = (q̄w

0)
−1 ⊗ q̄w

τ , (50)

r =
t

τ
· log(q̄0

τ), (51)

q̄0
t = exp(r), (52)

q̄w
t = q̄w

0 ⊗ q̄0
t . (53)

We can rewrite both Eq. (50) and Eq. (53) as

q̄0
τ = Q((q̄w

0)
−1) · q̄w

τ = Q̂(q̄w
τ) · (q̄w

0)
−1, (54)

q̄w
t = Q(q̄w

0) · q̄0
t = Q̂(q̄0

t) · q̄w
0 . (55)

The Jacobian ∂q̄w
t

∂q̄w
0
∈ R4×4 can thus be derived as

∂q̄w
t

∂q̄w
0

= Q̂(q̄0
t) +Q(q̄w

0) ·
∂q̄0

t

∂q̄w
0

, (56)

∂q̄0
t

∂q̄w
0

=
∂q̄0

t

∂r
· ∂r

∂q̄0
τ

· Q̂(q̄w
τ) ·

∂(q̄w
0)

−1

∂q̄w
0

. (57)

Similarly for the Jacobian ∂q̄w
t

∂q̄w
τ
∈ R4×4, we can derive it as

∂q̄w
t

∂q̄w
τ

= Q(q̄w
0) ·

∂q̄0
t

∂r
· ∂r

∂q̄0
τ

·Q((q̄w
0)

−1). (58)

Note that both ∂q̄0
t

∂r and ∂r
∂q̄0

τ
are the Jacobians related to the

exponential mapping and logarithm mapping respectively.
∂(q̄w

0)−1

∂q̄w
0

is the Jacobian related to the inverse of quaternion.

Iref

Ii

)

Iref

%
%&

x

x() (+,-)⁄ Ii

p23

4
5

Figure 1. Geometric relationship between x ∈ R2 (i.e. the red
pixel) of the virtual sharp image Ii and x iτ

n−i
∈ R2 (i.e. the black

pixel) of the reference image Iref .

The Jacobians with respect to the local parameterization
can then be computed as

∂q̄w
t

∂∆rw0
=

∂q̄w
t

∂q̄w
0

·Q(q̄w
0) ·


0.5 0 0
0 0.5 0
0 0 0.5
0 0 0

 , (59)

∂q̄w
t

∂∆rwτ
=

∂q̄w
t

∂q̄w
τ

·Q(q̄w
τ) ·


0.5 0 0
0 0.5 0
0 0 0.5
0 0 0

 . (60)

5. Details on the pixel point transfer
In this section, we derive the geometric relationship be-

tween the reference keyframe and the ith virtual sharp im-
age, which we denote the corresponding pose with Tref

i ∈
SE(3). We simplify Figure 3 in the main text (i.e. left fig-
ure of Fig. 1) with its 2D top-down view (i.e. right figure of
Fig. 1).

We denote the translation vector pref
i of Tref

i with
[px, py, pz]

T and represent the rotation Rref
i with unit

quaternion, i.e. q̄ = [qx, qy , qz , qw]T . We denote d as the
depth of the frontal-parallel plane with respect to the ref-
erence key-frame. We can then compute the distance d′

between the camera center of the ith virtual camera to the
frontal-parallel plane as

d′ = d− pz. (61)

The unitary ray of pixel x ∈ R2 in the ith image Ii can be
computed by the back-projection function π−1 : R2 → R3

as xy
z

 = π−1(x), (62)

where x2 + y2 + z2 = 1. We can then compute cosine
function of the angle (i.e. θ) between the unitary ray and the

plane normal of the frontal parallel plane as

λ = cos(θ) = (Rref
i · π−1(x))T ·

00
1

 , (63)

from which we can further simply it as

λ = 2x(qxqz−qwqy)+2y(qxqw+qyqz)+z(q2w−q2x−q2y+q2z).
(64)

The length of the line segment L, which goes through pixel
point x from camera center of the ith camera and intersects
with the frontal-parallel plane, can then be simply computed
as

|L| = d′

λ
=

d− pz
λ

. (65)

The 3D intersection point p3d between the line segment L
and the frontal parallel plane can thus be computed as

p3d = |L|

xy
z

 =
d− pz

λ

xy
z

 , (66)

where the p3d is represented in the coordinate frame of
the ith camera. To compute the corresponding pixel point
x iτ

n−1
in the reference image Iref , we need transform the 3D

point p3d to the reference camera coordinate frame and then
project it to the image plane. It can be formally defined as

p′
3d = Tref

i · p3d, (67)
x iτ

n−1
= π(p′

3d), (68)

where p′
3d is the 3D point p3d represented in the reference

camera, π : R3 → R2 is the camera projection function.

Jacobian derivations: The pose of the ith virtual camera,
i.e. Tref

i , relates to Tref
0 and Tref

τ via Eq. (42). To esti-
mate both Tref

0 and Tref
τ , we need to have the Jacobian of

x iτ
n−1

with respect to Tref
i . Since the relationship between

x iτ
n−1

and Tref
i is complex, as derived above, we use the

Mathematica Symbolic Toolbox1 for the ease of Jacobian
derivations. The details are as follows.

α0 = qxx+ qyy + qzz, α1 = qyx− qwz − qxy, (69)
α2 = qwy − qxz + qzx, α3 = qwx+ qyz − qzy, (70)
α4 = qwz + qxy − qyx, β0 = −2(qwqz − qxqy), (71)
β1 = 2(qwqy + qxqz), β2 = 2(qwqz + qxqy), (72)
β3 = −2(qwqx − qyqz), β4 = −2(qwqy − qxqz), (73)
β5 = 2(qwqx + qyqz), (74)

1https://www.wolfram.com/mathematica/

γ0 = x(q2w + q2x − q2y − q2z) + yβ0 + zβ1, (75)

γ1 = xβ2 + y(q2w − q2x + q2y − q2z) + zβ3, (76)

γ2 = xβ4 + yβ5 + z(q2w − q2x − q2y + q2z), (77)

∂p′
3d

∂px
=

10
0

 , (78)

∂p′
3d

∂py
=

01
0

 , (79)

∂p′
3d

∂pz
=

 −γ0/λ
−γ1/λ
1− γ2/λ

 , (80)

∂p′
3d

∂qx
= 2

d− pz
λ

α0 − α2γ0/λ
α1 − α2γ1/λ
α2 − α2γ2/λ

 , (81)

∂p′
3d

∂qy
= 2

d− pz
λ

 α4 + α3γ0/λ
α0 + α3γ1/λ
−α3 + α3γ2/λ

 , (82)

∂p′
3d

∂qz
= 2

d− pz
λ

−α2 + α0γ0/λ
α3 − α0γ1/λ
α0 − α0γ2/λ

 , (83)

∂p′
3d

∂qw
= 2

d− pz
λ

α3 − α4γ0/λ
α2 − α4γ1/λ
α4 − α4γ2/λ

 . (84)

The Jacobian
∂x iτ

n−1

∂p′
3d

∈ R2×3 is related to the camera pro-
jection function. For a pinhole camera model with the in-
trinsic parameters fx, fy, cx, cy , it can be derived as

∂x iτ
n−1

∂p′
3d

=

 fx
p′

3dz

0 − fxp
′
3dx

(p′
3dz

)2

0
fy

p′
3dz

−
fyp

′
3dy

(p′
3dz

)2

 , (85)

where p′
3d = [p′

3dx
,p′

3dy
,p′

3dz
]T .

6. Computational complexity
To compensate the effect of motion blur, we need to sam-

ple multiple discrete virtual frames to synthesize the blurry
image (Eq.6 in the main text). The number of discrete
frames should be larger than the blur kernel size. Currently,
we use n = 64 for our experiments. If n = 1, it reduces
to the problem of assuming the images are sharp. The ac-
curacy would thus be affected for motion blurred images.
If we raise n to 2 or higher, the number of pose parame-
ters would not be affected (i.e. 12 variables). However, the
number of pixel transfers would be increased (e.g. doubled
for 2 virtual frames). Larger n thus requires more computa-
tional resources. To further improve the efficiency, we can
dynamically change the number of discrete frames (i.e. we
can use a smaller n for less blurry image and a larger n
for more blurry image). The back-end is the same as the
original DSO [2] and it is running on CPU. Note that the
back-end only relies on the deblurred keyframes when op-
timizing the keyframe poses and structure, thus we can use
the original DSO implementation.

7. Additional experimental results with our
real-world dataset

Table 1 presents additional experimental results with our
real-world dataset. It demonstrates that ORB-SLAM [4]
suffers from significant frame drops if the images are mo-
tion blurred. It is reasonable since ORB-SLAM is a sparse
feature based approach. If the images are severely motion
blurred, the sparse feature detector would have difficulties
to detect enough good features for motion estimation. In
contrast, DSO [2] is more robust to motion blur (i.e. no
frame drops). However, since pairs of motion blurred im-
ages usually violate the photometric-consistency assump-
tion, the accuracy of DSO is degraded. Our proposed mo-
tion blur aware visual odometry (i.e. MBA-VO) models the
motion blur for direct image alignment algorithm, so that
the photometric-consistency assumption would still hold
even the images are motion blurred. It thus achieves bet-
ter accuracy and robustness compared to DSO and ORB-
SLAM.

8. Performance in the absence of motion-blur
To further demonstrate the performance of our proposed

method with images in good quality, we run an experi-
ment comparing the proposed approach with DSO on the
EuRoC dataset [1]. Table 2 demonstrates that MBA-VO
performs slightly worse than DSO on MH 02 easy and
MH 03 medium. However, it performs better than DSO
on MH 01 easy, MH 04 difficult and MH 05 difficult. In
general, we observed similar performance as DSO for good
images. The VICON room sequences in the EuRoC dataset
are very challenging. Both DSO and MBA-VO fail even

ORB-SLAM [4] DSO [2] MBA-VO

ATE (m) FD (%) ATE (m) FD (%) ATE (m) FD (%)

Seq5 0.1931 73.2 0.3241 0 0.2667 0
Seq6 0.0743 25.4 0.4968 0 0.3321 0
Seq7 0.1872 47.9 0.3857 0 0.2718 0
Seq8 0.5861 31.9 0.7906 0 0.3915 0
Seq9 0.3791 26.6 0.8538 0 0.2838 0
Seq10 0.1708 33.6 0.4800 0 0.4319 0
Seq11 0.1378 39.1 x x 0.4003 0
Seq12 x x 0.5031 0 0.3632 0
Seq13 x x 0.4501 0 0.3043 0
Seq14 x x x x 0.4516 0
Seq15 x x x x 0.3687 0
Seq16 x x x x 0.3765 0
Seq17 x x x x 0.3299 0

Table 1. The performance of MBA-VO on our real-world dataset.
x denotes the corresponding algorithm fails on that particular se-
quence. It demonstrates that ORB-SLAM suffers from significant
frame drops if the images are motion blurred, although it usually
has more accurate motion estimations. MBA-VO improves the ac-
curacy of DSO, while being robust to motion blur with no frame
drops.

with sharp images (either with very large errors or complete
tracking failure). This might be caused by the lack of good
texture for some of the frames. The sequences also contain
degenerate motions (e.g. close to pure rotation). Without
any relocalization module (e.g. as is used in ORB-SLAM),
it is hard for both DSO and MBA-VO to recover once the
pipeline breaks or drifts significantly.

ORB-SLAM DSO MBA-VO

MH 01 easy 0.030 0.050 0.035
MH 02 easy 0.022 0.077 0.101
MH 03 medium 0.049 0.178 0.239
MH 04 difficult 2.472 1.181 0.476
MH 05 difficult 4.386 1.261 0.265

Table 2. EuRoC dataset: Comparison in terms of ATE RMSE er-
ror metric (m). Note that we did not discard any images (e.g. the
first few shaky images which are used to initialize IMU) from the
EuRoC dataset for our evaluation. Therefore, the resulted accu-
racy for ORB-SLAM and DSO might be a bit different from prior
reported results.

9. Potential integration with IMU measure-
ments

We think the performance would be further improved if
we integrate the measurements from IMU. However, we
generally cannot rely on IMU solely for odometry due to
drift, and it needs to be combined with vision. This means
that we still need to track for blurry images to reduce

drift. Note that IMU measurements can naturally enter our
pipeline by providing initial estimates for the local motion
trajectory, as well as helping the keyframe deblurring. In the
paper, we decided to focus on the pure VO problem first, but
we think the pipeline can be easily extended to VIO in the
future. Another promising future direction would be to also
model rolling shutter effects during the reblurring.

References
[1] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schnei-

der, Joern Rehder, Sammy Omari, Markus W Achtelik, and
Roland Siegwart. The euroc micro aerial vehicle datasets. The
International Journal of Robotics Research, 2016. 5

[2] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct
sparse odometry. Trans. Pattern Analysis and Machine In-
telligence (PAMI), 40(3):611–625, 2017. 5, 6

[3] Sebastian Grassia. Practical Parameterization of Rotations
Using the Exponential Map. Journal of Graphics Tools, 1998.
1

[4] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-
source slam system for monocular, stereo, and rgb-d cameras.
IEEE Transactions on Robotics, 33(5):1255–1262, 2017. 5, 6

