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1. Proof of Eq. (15)
The Dk-related terms in ‘M-Step’ is a quadratic op-

timization problem with orthogonality constraints, which
holds the form as

min
X

Tr
(
WXTAX

)
s.t. XTX = I, (S1)

where W is a positive diagonal matrix, A is a positive def-
inite matrix that can be decomposed as

A = DΛDT , (S2)

where D is an orthogonal matrix and Λ denotes a diagonal
matrix with eigenvalues {λs}Ss=1 as its diagonal elements.
Without loss of generality, we assume that eigenvalues are
sorted as λ1 > λ2 > ... > λS > 0 and that diagonal
elements of W are sorted as 0 < w1 < w2 < ... < wS .

The Lemma 1 in [8] indicates that the local minimizer
of the problem presented in Eq. (S1) has to satisfy the or-
thogonality constraint XTX = I and the optimal condition

GXT −XGT = 0, (S3)

where G is the gradient of the objective function in Eq. (S1)
with respect to X. Based on this Lemma, it can be proved
that X = D is the solution to the problem shown in Eq.
(S1).
Proof. For the objective function shown in Eq. (S1), its gra-
dient with respect to X is

G = 2AXW. (S4)

Besides, for any matrix X, it can be written as

X = DM. (S5)
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Substituting Eqs. (S2), (S4)-(S5) into the optimal condition
Eq. (S3), one can obtain

ΛMWMT = MWMTΛ. (S6)

If we denote B = MWMT , B has to be a diagonal ma-
trix to satisfy Eq. (S6) since Λ is a diagonal matrix with
different diagonal elements.

On the other hand, if X satisfies the orthogonality con-
straint XTX = I, the matrix M will also be an orthogonal
matrix. Therefore, MWMT can be regarded as the eigen-
value decomposition of the diagonal matrix B. Note that,
the eigenvectors of a diagonal matrix with different diagonal
elements have to be {es}Ss=1, where es denotes the vector
whose s-th element is 1 and other elements are 0. That is
to say, for any matrix X satisfying the orthogonality con-
straint and the optimal condition, its corresponding matrix
M must hold the form as

M = [ep1 , ep2 , ...epS
], (S7)

where ps is the s-th element of a vector p consisting of any
arrangement from 1 to S.

Furthermore, substituting Eqs. (S2), (S5), (S7) into Eq.
(S1), the original optimization problem can be converted as

min
p

S∑
s=1

wsλps
. (S8)

As one can see, this is essentially a sorting problem aimed at
finding a specific order of {λs}Ss=1 that holds the minimum
objective function value. Since there are λ1 > λ2 > ... >
λS > 0 and 0 < w1 < w2 < ... < wS , it can be easily
observed that the solution to Eq. (S8) is p = [1, 2, ...S].
In this case, M is the identity function and thus there is
X = D. The proof is done.

It is worth noting that X = D is still the minimizer of
Eq. (S1) when the assumption is relaxed to λ1 ≥ λ2 ≥ ... ≥
λS > 0 and 0 < w1 ≤ w2 ≤ ... ≤ wS . The corresponding
proof can be derived with a similar procedure as the above
proof.



Train BM3D (30.24dB) EPLL (30.44dB) PGPD (30.38dB) NL-Bayes (30.28dB)

Noisy (24.61dB) N2V (26.61dB) DIP (28.28dB) S2S (27.93dB) SS-GMM (30.38dB)

(a) Visual results of comparison methods on image ‘Train’ of BSD68 with the noise level of σ = 15.

Building BM3D (28.57dB) EPLL (28.37dB) PGPD (28.50dB) NL-Bayes (28.28dB)

Noisy (20.16dB) N2V (27.24dB) DIP (27.82dB) S2S (28.70dB) SS-GMM (28.68dB)

(b) Visual results of comparison methods on image ‘Building’ of BSD68 with the noise level of σ = 25.

Airplane BM3D (33.39dB) EPLL (32.98dB) PGPD (33.57dB) NL-Bayes (33.74dB)

Noisy (14.14dB) N2V (32.76dB) DIP (32.95dB) S2S (32.36dB) SS-GMM (33.77dB)

(c) Visual results of comparison methods on image ‘Airplane’ of BSD68 with the noise level of σ = 50.

Figure S1. Visual comparisons of different image denoising algorithms.

2. Experimental Results

2.1. Implementation of Comparison Methods

The comparison methods include a) the non-learning
method: BM3D [2]; b) GMM-related methods: EPLL [10],
PGPD [9] and NL-Bayes [4]; c) self-supervised deep learn-
ing methods: N2V [3], DIP [7] and S2S [6]. All of these

methods are implemented with the source codes and/or
trained models provided by their authors. For BM3D and
NL-Bayes, all of the default settings are adopted. For EPLL
and PGPD, the models trained by their authors are adopted.
As [9, 10] indicates, the training data used for the trained
EPLL and PGPD are from [5] and the Kodak PhotoCD
Dataset (http://r0k.us/graphics/kodak/), respectively. Since



BM3D, EPLL, PGPD and NL-Bayes require the noise level
as an extra input, the true noise level is provided to them
in advance. For N2V, it is trained by us with the source
code on 400 images of the size 180×180 from [1]. A sim-
ilar setting is adopted in [6] for N2V. For DIP, its iteration
number is tuned by hand to achieve the best performance.
For each test image, the network is at first trained for 3000
iterations. Then, the best iteration number for each noisy
image is selected within 3000 iterations by using the corre-
sponding clean image as guidance. For S2S, it is trained on
each noisy image with the default hyper-parameters.

2.2. Implementation of determining L

Given the estimated noise level σ, L is determined by
Eq. (19). At first, we sort all of λ̃E

ks in ascending order. In
this case, calculating Eq. (19) is equivalent to averaging the
first KS − L elements in this ordered sequence. Then, we
decrease L from KS − 1 till the σ calculated by Eq. (19)
is equal or close enough to that estimated as Sec. 3.1. The
whole process is efficient, only taking about 50 millisec-
onds.

2.3. More Results on Image Denoising

In Fig. S1, the visual results of comparison methods on
three images ‘Train’, ‘Building’ and ‘Airplane’ with differ-
ent noise levels are provided.

2.4. More Analysis

Validation of the noise estimation module. In Tab. S1,
we provide a comparison of our proposed method to its
modified version that is provided with the true noise level.
As Tab. S1 shows, these two versions perform similarly on
Set12 at all of the three noise levels. This demonstrates
the effectiveness of the self-contained noise estimator of our
proposed method.

Table S1. Image denoising results w/o the true noise level.

Dataset σ known? σ = 15 σ = 25 σ = 50

Set12 yes 32.19 29.70 26.40
no 32.18 29.68 26.38

Validation of the determination of constraint level L. In
Fig. S2, we plot the PSNR results versus the levels of spar-
sity constraint on two images ‘cameraman’ and ‘house’ of
noise level σ = 25. The level of sparsity constraint is calcu-
lated as 1−L/(K ·S), where L is the parameter determining
the constraint level, K is the number of Gaussian compo-
nents and S is the number of eigenvalues in each compo-
nent.

As Fig. S2 shows, the PSNR results peak at different
constraint levels for images ‘cameraman’ and ‘house’. This
demonstrates the necessity of choosing different L for dif-
ferent images. Our proposed method provides a solution to
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Figure S2. Image denoising results on ‘house’ and ‘cameraman’
of noise level σ = 25 with different levels of sparsity constraint.
The dashed lines are the PSNR results achieved by our proposed
way of determining L.
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Figure S3. Image denoising results on Set12 of noise level σ = 25
with different numbers of Gaussian components K.

the adaptive determination of L. To demonstrate its effec-
tiveness, we plot the PSNR results of our proposed method
in Fig. S2 with dashed lines. As one can see, the dashed
lines are respectively around the peak regions of the other
two curves. This indicates that our proposed method suc-
cessfully selects the optimal L for both ‘cameraman’ and
‘house’.
Selection of the number of Gaussian components K. In
Fig. S3, we plot the average PSNR results on Set12 of noise
level σ = 25 versus the numbers of Gaussian components
K. As Fig. S3 shows, when K increases from 5 to 100, the
average PSNR result increases at first and then decreases.
This is the result of two factors. On the one hand, when K
increases, the model capacity of the GMM increases so that
it can potentially lead to better image denoising results. On
the other hand, when K is too large, the effective number
Nk of each component tends to be smaller and smaller. This
will finally violate the assumption adopted by us that Nk is
large enough. As a result, the highest PSNR occurs at a
reasonable K instead of the largest K. This means that K
is an empirical parameter. Fortunately, we observe that K
is not as sensitive as L to the image content. Therefore, we
can determine it with only a few images and then apply it to
other cases.
Selection of parameter r. In Fig. S4, we plot the av-
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Figure S4. Image denoising results on Set12 of noise level σ = 25
with different parameters r.

erage PSNR results on Set12 of noise level σ = 25
versus the parameter r. As shown in Fig. S4, when r
changes from 0.3 to 0.7, the average PSNR varies in a small
range (29.62dB∼29.68dB), indicating insensitivity of ours
to choice of r. In this paper, we choose r for all test cases.
Analysis on estimation error at small eigenvalues. In the
Fig. 5 of the main body, we compare histograms of eigen-
values learned by our proposed SS-GMM algorithm and
those learned from the clean/noisy ‘couple’ with the EM-
GMM algorithm. As this figure shows, the histogram cor-
responding to SS-GMM coincides with the curve ‘Clean
+ EM’ at most places. They are different only at small
eigenvalues. A key question is how important these small
eigenvalues are? To explore this question, we manually
set small eigenvalues (λ < 0.25σ2) of the GMM trained
by EPLL [10] to 0. In this case, the modified model can
still achieve 31.84dB, which is similar to the original model
(31.83dB), on Set12 when σ = 15. This demonstrates that
the error at small eigenvalues is not important since it will
only incur a very minor difference.
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