
A. Benchmark Details
A.1. Trajectory Forecasting Details

We validate our method on two forecasting benchmarks,
the ETH & UCY benchmark and the Trajnet++ benchmark.
The former is a general benchmark containing pedestrian
trajectories in a variety of scenarios. The latter one is based
on a curated meta-dataset that consists of interacting scenar-
ios selected from several publicly available subsets, such as
WildTrack [13], L-CAS [90] and CFF [4]. This benchmark
has been used in a series of recent competitions.

Our evaluation protocol follows the previous work [48,
65, 84]. On the ETH & UCY datasets, we use the leave-
one-out approach, where forecasting models are trained on
four sub-datasets and tested on the held-out fifth. On the
Trajnet++ dataset, we use the official split of the training
and test set. One common feature of recent models like
Social-STGCNN and Trajectron++ is that the prediction of
the primary agent is only conditioned on the states of neigh-
boring agents up to the observation time to but not on any
steps from to to tp that have already been predicted, i.e.,
sitp+1 = f(si1:tp , s

M\i
1:to

). While this design choice acceler-
ates training and inference, it makes the forecasting model
unaware of the latest states of the nearby agents and causes
notoriously high collision rate at long horizon. As such,
our evaluation of collision rate for the Social-STGCNN and
Trajectron++ is focused on the first four prediction steps
where the models still have access to relatively up-to-date
information of the surrounding neighbors. Yet, for the Tra-
jnet++ models that perform fully joint prediction in a re-
current manner, sitp+1 = f(si1:tp , s

M\i
1:tp

), we measure the
collision rate over the entire prediction horizon.

A.2. Reinforcement Learning Details

The original SARL policy [14] requires a linear motion
model as well as imitation pre-training to accomplish the
reinforcement learning task from sparse reward feedback.
These hand-crafted components, however, introduce extra
assumptions over the crowd navigation task and make it
hard to analyze the sample efficiency of an RL algorithm.
To tease apart the effect of our proposed method, we adopt
the following dense reward function [85] for the model-free
Rainbow algorithm,

r(st, at) = α(dt−1
g − dtg)

+


−1 if dtm < 0

10dtm − 1 else if dtm < 0.1

1 else if goal is reached
0 otherwise

(9)

where dg is the Euclidean distance between the robot and
its goal, α = 0.08 is a control parameter. Other settings are
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Figure 7: Histogram of the human-robot distance on the crowd
navigation task with imitation learning. The vanilla method suf-
fers from the problem of covariate shift in closed-loop sequential
predictions, whereas our method results in a much smaller gap be-
tween the training and test state distributions.

kept the same as Section 4.3.

B. Covariate Shift

To further understand the effect of our learning method
on closed-loop sequential predictions, we conduct a detailed
analysis of the state distribution at test time on the crowd
navigation task with imitation learning. Here, we focus
on minimum distance between the robot and the other sur-
rounding agents at each frame and collect a set of robot-
human distances from 500 test episodes.

Figure 7 shows the histogram of human-robot distance
with different policies. As expected, the density of short-
distance states under the expert demonstrator is close to
zero, which reflects the expert’s high degree of social aware-
ness as well as confirms the lack of dangerous occur-
rences in the demonstration data. Compared with the train-
ing distribution, the test distribution induced by the model
from the vanilla imitation learning yields a clear distinc-
tion. It exhibits lower density at the distance around 1.0
[m], but higher density in the dangerous regime, e.g., dis-
tance smaller than 0.5 [m]. On the contrary, our method re-
sults in a test state distribution almost overlapping with the
training one over the dangerous states. These results ver-
ify that, given the same distribution of the initial state, the
model trained with our method visits dangerous states much
less frequently and functions in closed-loop operation much
more robustly.

C. Qualitative Results

In addition to quantitative comparison, Figure 8 shows
the qualitative results of different learning methods in three
different interacting scenarios on the Trajnet++ benchmark.
The Directional-LSTM [48] trained with the vanilla pre-
dictive learning outputs colliding trajectories between the



0 5 10 15
x [m]

2

0

2

4

6

8

10

y 
[m

]

History Forecasting

(a) Avoidance - Vanilla

0 5 10 15
x [m]

2

0

2

4

6

8

10

y 
[m

]

History Forecasting

(b) Avoidance - Ours

2.5 5.0 7.5 10.0 12.5 15.0 17.5
x [m]

0

2

4

6

8

10

y 
[m

]

History Forecasting

(c) Group - Vanilla

2.5 5.0 7.5 10.0 12.5 15.0 17.5
x [m]

0

2

4

6

8

10

y 
[m

]

History Forecasting

(d) Group - Ours

5 0 5 10
x [m]

6

4

2

0

2

4

6

y 
[m

]

History Forecasting

(e) Other - Vanilla

5 0 5 10
x [m]

6

4

2

0

2

4

6

y 
[m

]

History Forecasting

(f) Other - Ours

Figure 8: Qualitative results of Directional-LSTM [48] models
trained with different methods in three interacting test cases on
the Trajnet++ benchmark [48]. The vanilla method leads to col-
lisions between the primary (black) and the nearby agent (red) at
the 4th, 12th, and 10th predicted step on the Avoidance, Group and
Other case respectively, whereas our method outputs collision-free
trajectories over the whole prediction horizon.

primary agent and its neighbors in these dense scenes. In
contrast, our method outputs more socially compliant solu-
tions: in the Group scenario, our predicted trajectory for the
primary agent stays in the middle of two other neighbors
at all time steps instead of sliding towards either of them.
In the Avoidance scenario, our method adjusts the trajec-
tories of both the primary and the opposite agent cooper-
atively. Similarly, in the Other scenario where pedestrians
come from almost orthogonal directions, our method jointly
twists the trajectories of these interactive agents, enabling
each of them to pass the crowded spot smoothly.


