
StereOBJ-1M: Large-scale Stereo Image Dataset for 6D Object Pose Estimation
Supplementary Material

Xingyu Liu Shun Iwase Kris M. Kitani
Carnegie Mellon University

A. Overview
In this document, we provide additional details on

StereOBJ-1M dataset as presented in the main paper. We
present additional baseline results on instance-level pose
detection for centrifuge tube class in Section B. In
Section C, we provide details on the hardware of data cap-
turing. In Section D, we provide more details on viewpoint
distribution of each object class. Lastly, in Section E, we
visualize more data samples from our dataset.

B. Multi-instance Pose Detection Results
In the main paper, we report the results of two baselines

on single-object pose estimation of 17 out of 18 objects on
the test set where there is at most one object instance from a
category in a scene. However, for centrifuge tube,
there are usually multiple instances recorded in a scene.
Therefore, centrifuge tube is used in multi-object
pose detection task. In this task, the framework is supposed
to perform instance-level detection and pose estimation si-
multaneously.

To adapt to instance-level pose detection, we modify the
baseline formulation by introducing additional 2D object
detection before pose estimation. Given a detected rough
2D bounding box of an object instance, we crop the image
patch and send it to pose estimation baselines, i.e. PVNet
[4] and KeyPose [2], to estimate the 2D keypoint locations
and therefore 6D pose of that object instance. The 2D object
detector we used is Faster-RCNN [5].

We use Average Precision (AP) as the evaluation metrics
of multi-instance pose detection. When calculating AP in
2D object detection, a detection result is considered correct
if the IoU between the detected bounding box and a ground
truth bounding box is larger than a threshold. Different from
2D object detection, we consider a pose detection result to
be correct if the ADD(-S) distance between the detected 6D
pose and a ground truth pose is smaller than a threshold. We
use 10% of the object diameter as the threshold of ADD(-
S). We report the pose detection results with single-RGB
image as input in Table 1. We notice that the above base-
line suffers when two or multiple instances object overlap

Table 1: AP results of object pose detection with single
RGB image as input.

method PVNet [4] KeyPose [2]
centrifuge tube 15.19 17.64

(a) (b)

(c) (d)

Figure 1: Hardware for data collection. (a) large fidu-
cial marker board; (b) static cameras with tripods; (c) small
fiducial markers; (d) moving stereo camera.

in the image and are included in the same image patch. In
this case, the pose estimation framework cannot distinguish
different instances and fails in keypoint prediction.

C. Data Capturing Hardware

We present the hardware used for capturing the data in
Figure 1, including a large fiducial marker board, several
small fiducial markers, two static cameras with two tripods,
and one moving stereo camera. We used the same Weewiew
stereo camera [1] for all three cameras, though the two
stereo cameras can be monocular. Weewiew stereo cam-
era has a stereo baseline of approximately 4.5cm which is
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Figure 2: Viewpoint distribution of the 18 objects in our dataset. (a) blade razor; (b) hammer; (c)
needle nose pliers (d) screwdriver; (e) side cutters; (f) tape measure; (g) wire stripper; (h)
wrench; (i) centrifuge tube; (j) microplate; (k) tube rack 2; (l) tube rack 50; (m) pipette 0.5 10;
(n) pipette 10 100; (o) pipette 100 1000; (p) sterile rack 10; (q) sterile rack 200; (r)
sterile rack 1000.

close to the distance between the two human eyes. All three
cameras are calibrated.

The fiducial markers are the first 20 AprilTags [7]. The
large fiducial marker board is printed on a 20in × 16in plas-
tic picture frame. Though the large fiducial marker board
needs to be accurately measured by its physical dimensions
with a vernier caliper, the small fiducial markers do not.

D. Viewpoint Coverage Distribution

Viewpoint coverage percentage is illustrated in Section
4.2 and Figure 5 of the main paper. We illustrate a more
detailed viewpoint distribution for each object in Figure 2.
The viewpoints are drawn as 3D points on the unit sphere
centered at the object center. Their positions on the unit
sphere are determined by the Azimuth and Elevation of the
viewpoint. Their density on the sphere is shown by heatmap
color. Notice that for objects such as microplate and
tape measure, there is no viewpoint distributed on the

−z space, because there is only one possible side up when
being put on a desktop.

E. More Visualizations of Data Samples

We provide more visualizations of data samples from our
dataset. As illustrated in Figure 3, the data annotation has
high precision.
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Figure 3: Visualization of data samples from StereOBJ-1M dataset. The first row is left stero images with semantic
masks and bounding boxes superimposed. In the second row, we use normalized coordinate map [3, 6] to illustrate the 6D
poses of the corresponding objects, where the coordinates of the object surface points are normalized to [0, 1]3 and converted
to RGB values in [0, 255]3 at projected pixels.
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