
A1. Detailed Architectures
The detailed architecture specifications are shown in Ta-

ble 1, where an input image size of 224×224 is assumed for
all architectures. “Concat n× n” indicates a concatenation
of n × n neighboring features in a patch. This operation
results in a downsampling of the feature map by a rate of n.
“96-d” denotes a linear layer with an output dimension of
96. “win. sz. 7 × 7” indicates a multi-head self-attention
module with window size of 7× 7.

A2. Detailed Experimental Settings
A2.1. Image classification on ImageNet-1K

The image classification is performed by applying a
global average pooling layer on the output feature map of
the last stage, followed by a linear classifier. We find this
strategy to be as accurate as using an additional class to-
ken as in ViT [10] and DeiT [21]. In evaluation, the top-1
accuracy using a single crop is reported.

Regular ImageNet-1K training The training settings
mostly follow [21]. For all model variants, we adopt a de-
fault input image resolution of 2242. For other resolutions
such as 3842, we fine-tune the models trained at 2242 reso-
lution, instead of training from scratch, to reduce GPU con-
sumption.

When training from scratch with a 2242 input, we em-
ploy an AdamW [15] optimizer for 300 epochs using a co-
sine decay learning rate scheduler with 20 epochs of lin-
ear warm-up. A batch size of 1024, an initial learning rate
of 0.001, a weight decay of 0.05, and gradient clipping
with a max norm of 1 are used. We include most of the
augmentation and regularization strategies of [21] in train-
ing, including RandAugment [9], Mixup [26], Cutmix [25],
random erasing [28] and stochastic depth [14], but not re-
peated augmentation [13] and Exponential Moving Average
(EMA) [17] which do not enhance performance. Note that
this is contrary to [21] where repeated augmentation is cru-
cial to stabilize the training of ViT. An increasing degree of
stochastic depth augmentation is employed for larger mod-
els, i.e. 0.2, 0.3, 0.5 for Swin-T, Swin-S, and Swin-B, re-
spectively.

For fine-tuning on input with larger resolution, we em-
ploy an adamW [15] optimizer for 30 epochs with a con-
stant learning rate of 10−5, weight decay of 10−8, and
the same data augmentation and regularizations as the first
stage except for setting the stochastic depth ratio to 0.1.

ImageNet-22K pre-training We also pre-train on the
larger ImageNet-22K dataset, which contains 14.2 million
images and 22K classes. The training is done in two stages.
For the first stage with 2242 input, we employ an AdamW

optimizer for 90 epochs using a linear decay learning rate
scheduler with a 5-epoch linear warm-up. A batch size of
4096, an initial learning rate of 0.001, and a weight decay
of 0.01 are used. In the second stage of ImageNet-1K fine-
tuning with 2242/3842 input, we train the models for 30
epochs with a batch size of 1024, a constant learning rate of
10−5, and a weight decay of 10−8.

A2.2. Object detection on COCO

For an ablation study, we consider four typical ob-
ject detection frameworks: Cascade Mask R-CNN [12, 2],
ATSS [27], RepPoints v2 [7], and Sparse RCNN [18] in
mmdetection [6]. For these four frameworks, we utilize the
same settings: multi-scale training [4, 18] (resizing the in-
put such that the shorter side is between 480 and 800 while
the longer side is at most 1333), AdamW [16] optimizer
(initial learning rate of 0.0001, weight decay of 0.05, and
batch size of 16), and 3x schedule (36 epochs with the learn-
ing rate decayed by 10× at epochs 27 and 33).

For system-level comparison, we adopt an improved
HTC [5] (denoted as HTC++) with instaboost [11], stronger
multi-scale training [3] (resizing the input such that the
shorter side is between 400 and 1400 while the longer side
is at most 1600), 6x schedule (72 epochs with the learning
rate decayed at epochs 63 and 69 by a factor of 0.1), soft-
NMS [1], and an extra global self-attention layer appended
at the output of last stage and ImageNet-22K pre-trained
model as initialization. We adopt stochastic depth with ra-
tio of 0.2 for all Swin Transformer models.

A2.3. Semantic segmentation on ADE20K

ADE20K [29] is a widely-used semantic segmentation
dataset, covering a broad range of 150 semantic categories.
It has 25K images in total, with 20K for training, 2K for val-
idation, and another 3K for testing. We utilize UperNet [23]
in mmsegmentation [8] as our base framework for its high
efficiency.

In training, we employ the AdamW [16] optimizer with
an initial learning rate of 6× 10−5, a weight decay of 0.01,
a scheduler that uses linear learning rate decay, and a lin-
ear warmup of 1,500 iterations. Models are trained on 8
GPUs with 2 images per GPU for 160K iterations. For aug-
mentations, we adopt the default setting in mmsegmentation
of random horizontal flipping, random re-scaling within
ratio range [0.5, 2.0] and random photometric distortion.
Stochastic depth with ratio of 0.2 is applied for all Swin
Transformer models. Swin-T, Swin-S are trained on the
standard setting as the previous approaches with an input
of 512×512. Swin-B and Swin-L with ‡ indicate that these
two models are pre-trained on ImageNet-22K, and trained
with the input of 640×640.

In inference, a multi-scale test using resolutions that are
[0.5, 0.75, 1.0, 1.25, 1.5, 1.75]× of that in training is em-



downsp. rate
(output size)

Swin-T Swin-S Swin-B Swin-L

stage 1
4×

(56×56)

concat 4×4, 96-d, LN concat 4×4, 96-d, LN concat 4×4, 128-d, LN concat 4×4, 192-d, LN[
win. sz. 7×7,
dim 96, head 3

]
× 2

[
win. sz. 7×7,
dim 96, head 3

]
× 2

[
win. sz. 7×7,

dim 128, head 4

]
× 2

[
win. sz. 7×7,

dim 192, head 6

]
× 2

stage 2
8×

(28×28)

concat 2×2, 192-d , LN concat 2×2, 192-d , LN concat 2×2, 256-d , LN concat 2×2, 384-d , LN[
win. sz. 7×7,

dim 192, head 6

]
× 2

[
win. sz. 7×7,

dim 192, head 6

]
× 2

[
win. sz. 7×7,

dim 256, head 8

]
× 2

[
win. sz. 7×7,

dim 384, head 12

]
× 2

stage 3
16×

(14×14)

concat 2×2, 384-d , LN concat 2×2, 384-d , LN concat 2×2, 512-d , LN concat 2×2, 768-d , LN[
win. sz. 7×7,

dim 384, head 12

]
× 6

[
win. sz. 7×7,

dim 384, head 12

]
× 18

[
win. sz. 7×7,

dim 512, head 16

]
× 18

[
win. sz. 7×7,

dim 768, head 24

]
× 18

stage 4
32×

(7×7)

concat 2×2, 768-d , LN concat 2×2, 768-d , LN concat 2×2, 1024-d , LN concat 2×2, 1536-d , LN[
win. sz. 7×7,

dim 768, head 24

]
× 2

[
win. sz. 7×7,

dim 768, head 24

]
× 2

[
win. sz. 7×7,

dim 1024, head 32

]
× 2

[
win. sz. 7×7,

dim 1536, head 48

]
× 2

Table 1. Detailed architecture specifications.

Swin-T Swin-S Swin-B
input
size

top-1
acc

throughput
(image / s)

top-1
acc

throughput
(image / s)

top-1
acc

throughput
(image / s)

2242 81.3 755.2 83.0 436.9 83.3 278.1
2562 81.6 580.9 83.4 336.7 83.7 208.1
3202 82.1 342.0 83.7 198.2 84.0 132.0
3842 82.2 219.5 83.9 127.6 84.5 84.7

Table 2. Swin Transformers with different input image size on
ImageNet-1K classification.

Backbone Optimizer APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

R50
SGD 45.0 62.9 48.8 38.5 59.9 41.4

AdamW 46.3 64.3 50.5 40.1 61.7 43.4

X101-32x4d
SGD 47.8 65.9 51.9 40.4 62.9 43.5

AdamW 48.1 66.5 52.4 41.6 63.9 45.2

X101-64x4d
SGD 48.8 66.9 53.0 41.4 63.9 44.7

AdamW 48.3 66.4 52.3 41.7 64.0 45.1
Table 3. Comparison of the SGD and AdamW optimizers for
ResNe(X)t backbones on COCO object detection using the Cas-
cade Mask R-CNN framework.

ployed. When reporting test scores, both the training im-
ages and validation images are used for training, following
common practice [24].

A3. More Experiments

A3.1. Image classification with different input size

Table 2 lists the performance of Swin Transformers with
different input image sizes from 2242 to 3842. In general,
a larger input resolution leads to better top-1 accuracy but
with slower inference speed.

A3.2. Different Optimizers for ResNe(X)t on COCO

Table 3 compares the AdamW and SGD optimizers of
the ResNe(X)t backbones on COCO object detection. The
Cascade Mask R-CNN framework is used in this compar-
ison. While SGD is used as a default optimizer for Cas-

method
image
size

#param. FLOPs
throughput
(image / s)

ImageNet
top-1 acc.

MLP-Mixer-B/16 [19] 2242 59M 12.7G - 76.4
ResMLP-S24 [20] 2242 30M 6.0G 715 79.4
ResMLP-B24 [20] 2242 116M 23.0G 231 81.0

Swin-T/D24
(Transformer)

2562 28M 5.9G 563 81.6

Swin-Mixer-T/D24 2562 20M 4.0G 807 79.4
Swin-Mixer-T/D12 2562 21M 4.0G 792 79.6
Swin-Mixer-T/D6 2562 23M 4.0G 766 79.7

Swin-Mixer-B/D24
(no shift)

2242 61M 10.4G 409 80.3

Swin-Mixer-B/D24 2242 61M 10.4G 409 81.3
Table 4. Performance of Swin MLP-Mixer on ImageNet-1K classi-
fication. D indictes the number of channels per head. Throughput
is measured using the GitHub repository of [22] and a V100 GPU,
following [21].

cade Mask R-CNN framework, we generally observe im-
proved accuracy by replacing it with an AdamW optimizer,
particularly for smaller backbones. We thus use AdamW
for ResNe(X)t backbones when compared to the proposed
Swin Transformer architectures.

A3.3. Swin MLP-Mixer

We apply the proposed hierarchical design and the
shifted window approach to the MLP-Mixer architec-
tures [19], referred to as Swin-Mixer. Table 4 shows the
performance of Swin-Mixer compared to the original MLP-
Mixer architectures [19] and a follow-up approach, i.e.,
ResMLP [19]. Swin-Mixer performs significantly better
than MLP-Mixer (81.3% vs. 76.4%) using slightly smaller
computation budget (10.4G vs. 12.7G). It also has better
speed accuracy trade-off compared to ResMLP [20]. These
results indicate the proposed hierarchical design and the
shifted window approach are generalizable.
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